微积分下册重积分课件:6.利用柱面坐标和球面坐标计算三重积分.PPT
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分下册重积分课件:6.利用柱面坐标和球面坐标计算三重积分.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 下册 积分 课件 利用 柱面 坐标 球面 计算 三重
- 资源描述:
-
1、,0 r,20 . z一、利用柱面坐标计算三重积分一、利用柱面坐标计算三重积分的柱面坐标的柱面坐标就叫点就叫点个数个数,则这样的三,则这样的三的极坐标为的极坐标为面上的投影面上的投影在在为空间内一点,并设点为空间内一点,并设点设设MzrrPxoyMzyxM,),( 规定:规定:xyzo),(zyxM),(rPr .,sin,coszzryrx 柱面坐标与直角坐柱面坐标与直角坐标的关系为标的关系为为常数为常数r为常数为常数z为常数为常数 如图,三坐标面分别为如图,三坐标面分别为圆柱面;圆柱面;半平面;半平面;平平 面面),(zyxM),(rPrzxyzo dxdydzzyxf),(.),sin,
2、cos( dzrdrdzrrf drxyzodzdr rd如图,柱面坐标系如图,柱面坐标系中的体积元素为中的体积元素为,dzrdrddv 解解由由 zzryrx sincos, zrzr34222, 3, 1 rz知交线为知交线为 23242030rrzdzrdrdI.413 面上,如图,面上,如图,投影到投影到把闭区域把闭区域xoy .20, 3043:22 rrzr,解解由由 022xzy 绕绕 oz 轴旋转得,轴旋转得,旋旋转转面面方方程程为为,222zyx 所围成的立体如图,所围成的立体如图, :2D224,xy.222020:22 zrr:1D2216,xy,824020:21 zr
3、r所围成立体的投影区域如图所围成立体的投影区域如图:2D1D,)()(21222221 dxdydzyxdxdydzyxIII218212rDIrdrdr dz,345 222222rDIrdrdr dz,625 原式原式 I 345 625 336. 82402022rdzrrdrd 22202022rdzrrdrd2:D224,xy202:.0228rz1:D22416,xy120224:,82rrz2D1D另解另解:218212rDIrdrdr dz 288 ,28222DIrdrdr dz 48 ,22248202rddrr r dz2282002ddrr r dz288 +48336
4、原式最简单的解法最简单的解法:先重后单(先二后一):8222()zDIxydxdy dz 22:2 ,zDxyz8222200zIdr rdr dz 336二、利用球面坐标计算三重积分二、利用球面坐标计算三重积分的球面坐标的球面坐标就叫做点就叫做点,个数个数面上的投影,这样的三面上的投影,这样的三在在点点为为的角,这里的角,这里段段逆时针方向转到有向线逆时针方向转到有向线轴按轴按轴来看自轴来看自为从正为从正轴正向所夹的角,轴正向所夹的角,与与为有向线段为有向线段间的距离,间的距离,与点与点点点为原为原来确定,其中来确定,其中,三个有次序的数三个有次序的数可用可用为空间内一点,则点为空间内一点,
5、则点设设MrxoyMPOPxzzOMMOrrMzyxM ),(,r 0.20 ,0 规定:规定:为常数为常数r为常数为常数 为常数为常数 如图,三坐标面分别为如图,三坐标面分别为圆锥面;圆锥面;球球 面;面;半平面半平面 .cos,sinsin,cossin rzryrx球面坐标与直角坐标的关系为球面坐标与直角坐标的关系为如图,如图,Pxyzo),(zyxMr zyxA,轴上的投影为轴上的投影为在在点点,面上的投影为面上的投影为在在设点设点AxPPxoyM.,zPMyAPxOA 则则 dxdydzzyxf),( .sin)cos,sinsin,cossin(2 ddrdrrrrf球面坐标系中的
6、体积元素为球面坐标系中的体积元素为,sin2 ddrdrdv drxyzodr dsinr rd d d sinr如图,如图,解解 1 采采用用球球面面坐坐标标az ,cos ar222zyx ,4 ,20,40,cos0: ar dxdydzyxI)(22drrdda 40cos03420sin da)0cos(51sin255403.105a 解解 2 采用柱面坐标采用柱面坐标 ,:222ayxD dxdydzyxI)(22 aradzrrdrd2020 adrrar03)(254254aaa .105a 222zyx , rz ,20,0,: arazr例例 4 4 求曲面求曲面2222
7、2azyx 与与22yxz 所围所围 成的立体体积成的立体体积.解解 由由锥锥面面和和球球面面围围成成,采采用用球球面面坐坐标标,由由22222azyx ,2ar 22yxz ,4 ,20,40,20: ar由由三三重重积积分分的的性性质质知知 dxdydzV, adrrddV202020sin4 4033)2(sin2da.)12(343a 补充:利用对称性化简三重积分计算补充:利用对称性化简三重积分计算使用对称性时应注意:使用对称性时应注意:、积分区域关于坐标面的对称性;、积分区域关于坐标面的对称性;、被积函数在积分区域上的关于三个坐标轴、被积函数在积分区域上的关于三个坐标轴的的奇偶性奇偶
展开阅读全文