微积分下册多元函数微分法及其应用课件:3.全微分及其应用.PPT
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分下册多元函数微分法及其应用课件:3.全微分及其应用.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 下册 多元 函数 微分 及其 应用 课件
- 资源描述:
-
1、),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元元函函数数对对x和和对对y的的偏偏微微分分 二二元元函函数数对对x和和对对y的的偏偏增增量量由一元函数微分学中增量与微分的关系得由一元函数微分学中增量与微分的关系得一、全微分的定义一、全微分的定义 如果函数如果函数),(yxfz 在点在点),(yx的某邻域内的某邻域内有定义,并设有定义,并设),(yyxxP 为这邻域内的为这邻域内的任意一点,则称这两点的函数值之差任意一点,则称这两点的函数值之差 ),(),(yxfyyxxf 为函数在点为函数在点 P对应于自变量增量对应于自变量增量yx ,的全增
2、的全增量,记为量,记为z , 即即 z =),(),(yxfyyxxf 全增量的概念全增量的概念 如果函数如果函数),(yxfz 在点在点),(yx的全增量的全增量),(),(yxfyyxxfz 可以表示为可以表示为)( oyBxAz ,其中,其中BA,不依赖于不依赖于yx ,而仅与而仅与yx,有关,有关,22)()(yx ,则称函数则称函数),(yxfz 在点在点),(yx可微分,可微分,yBxA 称为函数称为函数),(yxfz 在点在点),(yx的的全微分全微分,记为,记为dz,即,即 dz= =yBxA . .全微分的定义全微分的定义 函函数数若若在在某某区区域域 D 内内各各点点处处处
3、处可可微微分分,则则称称这这函函数数在在 D 内内可可微微分分. 如果函数如果函数),(yxfz 在点在点),(yx可微分可微分, 则则函数在该点连续函数在该点连续.事实上事实上),( oyBxAz 0000limlimlimlim ( )0,xyzA xB yo 故故函函数数),(yxfz 在在点点),(yx处处连连续续.则则二、可微的条件二、可微的条件证证如如果果函函数数),(yxfz 在在点点),(yxP可可微微分分, ),(yyxxPP的的某某个个邻邻域域)( oyBxAz 总成立总成立,当当0 y时,上式仍成立,时,上式仍成立,此时此时| x ,),(),(yxfyxxf |),(|
4、xoxA Axyxfyxxfx ),(),(lim0,xz 同理可得同理可得.yzB 一元函数在某点的导数存在一元函数在某点的导数存在 微分存在微分存在多元函数的各偏导数存在多元函数的各偏导数存在 全微分存在全微分存在例如,例如,.000),(222222 yxyxyxxyyxf在点在点)0 , 0(处有处有0)0 , 0()0 , 0( yxff)0 , 0()0 , 0(yfxfzyx ,)()(22yxyx 则则 22)()(yxyx 22()()xyxy 说说明明它它不不能能随随着着0 而而趋趋于于 0,0 当当 时,时,),()0 , 0()0 , 0( oyfxfzyx 函数在点函
5、数在点)0 , 0(处不可微处不可微.221()()2xyxy 说明说明:多元函数的各偏导数存在并不能保证全:多元函数的各偏导数存在并不能保证全 微分存在,微分存在,定理定理(充分条件)如果函数(充分条件)如果函数),(yxfz 的偏的偏导数导数xz 、yz 在点在点),(yx连续,则该函数在点连续,则该函数在点),(yx可微分可微分证证),(),(yxfyyxxfz ),(),(yyxfyyxxf ),(),(yxfyyxf ),(),(yyxfyyxxf xyyxxfx ),(1 )10(1 在第一个方括号内,应用拉格朗日中值定理在第一个方括号内,应用拉格朗日中值定理xxyxfx 1),(
6、 (依偏导数的连续性)(依偏导数的连续性)且且当当0, 0 yx时时,01 .其中其中1 为为yx ,的函数的函数,xxyxfx 1),( yyyxfy 2),( z 2121 yx, 00 故函数故函数),(yxfz 在点在点),(yx处可微处可微.同理同理( ,)( , )f x yyf x y,),(2yyyxfy 当当0 y时,时,02 ,2( ,)yfx yyy2(01)习惯上,记全微分为习惯上,记全微分为.dyyzdxxzdz 全微分的定义可推广到三元及三元以上函数全微分的定义可推广到三元及三元以上函数.dzzudyyudxxudu 通常我们把二元函数的全微分等于它的两个通常我们把
7、二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合偏微分之和这件事称为二元函数的微分符合叠加原理也适用于二元以上函数的情况叠加原理也适用于二元以上函数的情况例例 1 1 计算函数计算函数xyez 在点在点)1 , 2(处的全微分处的全微分.解解,xyyexz ,xyxeyz ,2)1 ,2(exz ,22)1 ,2(eyz .222dyedxedz 所求全微分所求全微分例例 2 2 求函数求函数)2cos(yxyz ,当,当4 x, y,4 dx, dy时的全微分时的全微分.解解),2sin(yxyxz ),2sin(2)2cos(yxyyxyz dyyzdxxzdz),4()
展开阅读全文