微积分下册常微分方程课件:2.可分离变量的微分方程.PPT
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分下册常微分方程课件:2.可分离变量的微分方程.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 下册 微分方程 课件 可分离 变量
- 资源描述:
-
1、一、可分离变量的微分方程一、可分离变量的微分方程dxxfdyyg)()( 称为可分离变量的微分方程称为可分离变量的微分方程. .5422yxdxdy 例如例如,2254dxxdyy 解法解法设设函函数数)(yg和和)(xf是是连连续续的的, dxxfdyyg)()(设设函函数数)(yG和和)(xF是是依依次次为为)(yg和和)(xf的的原原函函数数,CxFyG )()(分离变量法分离变量法CxFyG )()(dxxfdyyg)()( yxxy23ddxxyyd3d2xxyyd3d213lnCxyCxylnln313eCxy31eexC3exCy 1eCC令解解,dtdM衰变速度衰变速度由题设条
2、件由题设条件)0(衰变系数衰变系数 MdtdMdtMdM , dtMdM00MMt 代代入入,lnlnctM ,tceM 即即00ceM 得得,C teMM 0衰变规律衰变规律例例 3. 英国人口学家马尔萨斯英国人口学家马尔萨斯(Malthas,1766-1834)根据百余年根据百余年的统计资料,于的统计资料,于1798年提出了闻名于世的所谓马尔萨斯人口年提出了闻名于世的所谓马尔萨斯人口模型,若时刻模型,若时刻 t 时的人口人数为时的人口人数为N(t),初始时刻,初始时刻(t=0)的人口的人口为为 ,假设人口增长率为常数,假设人口增长率为常数r(即单位时间内人口的增长量(即单位时间内人口的增长
3、量与当时的人口量成正比)。根据马尔萨斯理论,从时刻与当时的人口量成正比)。根据马尔萨斯理论,从时刻t到时到时刻刻t+t的人口增长量是的人口增长量是()( )=( )N ttN trN tt()( )=( )N ttN trN tt从而0N0t 令就得到人口数所应满足的微分方程,0(0)dNrNdtNN即0()( )lim( ),tN ttN trN tt 求解该微分方程得到:显然,如果r0,人口将按指数规律随时间无限增长增长,出现人口爆炸,这个模型虽然与19世纪以前欧洲一些地区的人口数据十分吻合,但它与自那以后的人口资料相比出现较大的偏差,后来,为了使人口预报特别是长期预报更好地符合实际情况,
展开阅读全文