微积分下册课件:4.6.PPT
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分下册课件:4.6.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 下册 课件 4.6
- 资源描述:
-
1、 设空间闭区域设空间闭区域 由分片光滑的闭曲面围成由分片光滑的闭曲面围成, ,函数函数),(zyxP、),(zyxQ、),(zyxR在在 上具有上具有一阶连续偏导数一阶连续偏导数, , 则有公式则有公式 RdxdyQdzdxPdydzdvzRyQxP)(一、高一、高 斯斯 公公 式式dSRQPdvzRyQxP)coscoscos()( 或或4.6 Gauss4.6 Gauss公式与通量公式与通量这这里里 是是 的的整整个个边边界界曲曲面面的的外外侧侧, cos,cos,cos是是 上上点点),(zyx处处的的法法向向量量的的方方向向余余弦弦. .证明证明设设闭闭区区域域 在在面面xoy上上的的
2、投投影影区区域域为为xyD. .xyzo 由由1 , ,2 和和3 三三部部分分组组成成, ,),(1:1yxzz ),(2:2yxzz 3 1 2 3 xyD根据三重积分的计算法根据三重积分的计算法dxdydzzRdyzRxyDyxzyxz ),(),(21.),(,),(,12 xyDdxdyyxzyxRyxzyxR根据曲面积分的计算法根据曲面积分的计算法,),(,),(11 xyDdxdyyxzyxRdxdyzyxR( (1 取取下下侧侧, , 2 取取上上侧侧, , 3 取取外外侧侧) ),),(,),(22 xyDdxdyyxzyxRdxdyzyxR,),(,),(,12 xyDdx
3、dyyxzyxRyxzyxR dxdyzyxR),(于是于是. 0),(3 dxdyzyxR.),( dxdyzyxRdvzR,),( dydzzyxPdvxP同理同理,),( dzdxzyxQdvyQ RdxdyQdzdxPdydzdvzRyQxP)(-高斯公式高斯公式和并以上三式得:和并以上三式得:GaussGauss公式的实质公式的实质 表达了空间闭区域上的三重积分与其边界表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系曲面上的曲面积分之间的关系.)coscoscos()( dSRQPdvzRyQxP 由两类曲面积分之间的关系知由两类曲面积分之间的关系知二、简单的应用二、简
4、单的应用例例1 1 计算曲面积分计算曲面积分xdydzzydxdyyx)()( 其中为柱面其中为柱面122 yx及平及平面面3, 0 zz所围成的空间闭所围成的空间闭区域区域 的整个边界曲面的外侧的整个边界曲面的外侧. .xozy113解解, 0,)(yxRQxzyP , 0, 0, zRyQzyxP dxdydzzy)(原式原式 dzrdrdzr )sin(.29 (利用柱面坐标得利用柱面坐标得)xozy113使用使用Guass公式时应注意公式时应注意:1.1.RQP,是对什么变量求偏导数是对什么变量求偏导数; ;2 2. .是是否否满满足足高高斯斯公公式式的的条条件件; ;3.3.是取闭曲
5、面的外侧是取闭曲面的外侧. .xyzo例例 2 2 计算曲面积分计算曲面积分dszyx)coscoscos(222 , ,其中为其中为锥面锥面 222zyx 介于平面介于平面0 z及及)0( hhz之间的部分的下侧之间的部分的下侧, , cos,cos,cos是在是在),(zyx处处的法向量的方向余弦的法向量的方向余弦. .h xyDxyzoh 1 解解空间曲面在空间曲面在 面上的投影域为面上的投影域为xoyxyD)(:2221hyxhz 补充补充曲面曲面 不是封闭曲面不是封闭曲面, 为利用为利用高斯公式高斯公式取上侧,取上侧,1 构成封闭曲面,构成封闭曲面,1 .1 围成空间区域围成空间区域
展开阅读全文