概率论与数理统计课件:3-5.PPT
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论与数理统计课件:3-5.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 课件
- 资源描述:
-
1、二、离散型随机变量函数的分布二、离散型随机变量函数的分布三、连续型随机变量函数的分布三、连续型随机变量函数的分布 四、小结四、小结一、问题的引入一、问题的引入第五节两个随机变量的函数的分布第五节两个随机变量的函数的分布.,),(,的分布的分布分布确定分布确定的的如何通过如何通过的函数关系的函数关系与与并且已知并且已知表示该人的血压表示该人的血压年龄和体重年龄和体重分别表示一个人的分别表示一个人的和和令令有一大群人有一大群人ZYXYXgZYXZZYX 为了解决类似的问题下面为了解决类似的问题下面我们讨论随机变量函数的分布我们讨论随机变量函数的分布.一、问题的引入一、问题的引入二、离散型随机变量函
2、数的分布二、离散型随机变量函数的分布 XY012 1 21312312112101211221220122的的分分布布律律为为设设随随机机变变量量),(YX例例1.)2(,)1(的分布律的分布律求求YXYX 概率概率),(YX)2, 1( 121) 1, 1( 121) 0 , 1( 123 221,122 121,121)2, 3( 122)0 , 3(122XY012 1 21312312112101211221220122解解等价于等价于概率概率),(YX)2, 1( 121) 1, 1( 121)0 , 1( 123 2,21122 1,21121)2, 3( 122)0 , 3(12
3、2YX 3 2 1 23 21 13YX 101252353YX P3 2 1 23 21 13121121123122121122122YX P01252353124121122121122122的分布律分别为的分布律分别为所以所以YXYX ,结论结论的联合分布律为的联合分布律为若二维离散型随机变量若二维离散型随机变量, 2, 1, jipyYxXPijji的分布律为的分布律为则随机变量函数则随机变量函数),(YXgZ ),(kkzYXgPzZP ., 2, 1 ,)( kpjikyxgzij例例2 设两个独立的随机变量设两个独立的随机变量 X 与与 Y 的分布律为的分布律为XXP317 .
4、 03 . 0YYP424 . 06 . 0求随机变量求随机变量 Z=X+Y 的分布律的分布律.,jijiyYPxXPyYxXP 得得YX421318. 012. 042. 028. 0因为因为 X 与与 Y 相互独立相互独立, 所以所以解解可得可得),(YX)4,3()2,3()4,1()2,1(P18. 012. 042. 028. 0YXZ 3557所以所以YXZ P35718. 054. 028. 0YX421318. 012. 042. 028. 0例例3 设相互独立的两个随机变量设相互独立的两个随机变量 X, Y 具有同一具有同一分布律分布律,且且 X 的分布律为的分布律为XP10
5、5 . 05 . 0.),max(:的的分分布布律律试试求求YXZ ,jYPiXPjYiXP 所以所以于是于是XY1010221221221221解解,相互独立相互独立与与因为因为YX),max(iYXP ,iYiXP ,iYiXP 0),max( YXP0 , 0P ,212 1),max( YXP1 , 11 , 00 , 1PPP 222212121 .232 的的分分布布律律为为故故),max(YXZ ZP104341XY1010221221221221的的分分布布函函数数为为则则的的概概率率密密度度为为设设YXZyxfYX ),(),()(zZPzFZ yxyxfzyxdd),( x
6、yOzyx yux 三、连续型随机变量函数的分布三、连续型随机变量函数的分布 1. Z=X+Y 的分布的分布yxyxfyzdd),( yuyyufzdd),( .dd),(uyyyufz 由此可得概率密度函数为由此可得概率密度函数为.d),()( yyyzfzfZ.d),()(xxzxfzfZ 由于由于 X 与与 Y 对称对称, 当当 X, Y 独立时独立时,也也可可表表示示为为)(zfZ,d)()()( yyfyzfzfYXZ.d)()()(xxzfxfzfYXZ 或或由公式由公式,d)()()(xxzfxfzfYXZ 解解,e21)(22 xxfxX由于由于,e21)(22 yyfyY例例
7、4 设两个独立的随机变量设两个独立的随机变量 X 与与Y 都服从标准正都服从标准正态分布态分布,求求 Z=X+Y 的概率密度的概率密度.)2 , 0(分布分布服从服从即即NZ2zxt ttzdee21242 .e2142z xzfxzxZdee21)(2)(222 xzxzdee212242 得得说明说明).,(,).,(),(,222121222211NZYXZNYNXYX 且有且有仍然服从正态分布仍然服从正态分布则则相互独立且相互独立且设设一般一般 有限个有限个相互独立相互独立的正态随机变量的线性组合的正态随机变量的线性组合仍然服从正态分布仍然服从正态分布. .的概率密度的概率密度求电阻求
8、电阻其他其他它们的概率密度均为它们的概率密度均为相互独立相互独立设设串联联接串联联接和和两电阻两电阻在一简单电路中在一简单电路中212121., 0,100,5010)(,RRRxxxfRRRR 解解的概率密度为的概率密度为由题意知由题意知 R.d)()()( xxzfxfzfR例例5 ,100,100 xzx当当,10,100时时即即 zxzxO1020zx10 zxzx 10 x.d)()()(中被积函数不为零中被积函数不为零 xxzfxfzfR)1(., 0,2010,d)()(,100,d)()()(10100 其他其他zzRzxxzfxfzxxzfxfzf ., 0,100,5010
9、)(其他其他将将xxxf此时此时 ., 0,100,50)(10)(其他其他xzxzxzf ., 0,2010,15000)20(,100,15000)60600()(332其其他他zzzzzzzfR式得式得代入代入)1(的概率密度分别为的概率密度分别为分布分布的的数为数为相互独立且分别服从参相互独立且分别服从参设设2122112121,),(),(,;,XXXXXX ., 0, 0,e)()()(1111其他其他xxxfxX, 0, 01 ., 0, 0,e)()()(1222其他其他yyyfyX, 0, 02 .,2121分布分布的的服从参数为服从参数为试证明试证明 XX例例6证明证明 x
展开阅读全文