高等数学微积分下(本科)全册配套精品完整课件(二).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学微积分下(本科)全册配套精品完整课件(二).ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 微积分 本科 配套 精品 完整 课件
- 资源描述:
-
1、高等数学微积分下高等数学微积分下(本科本科)全册全册配套精品完整课件配套精品完整课件(二)二)第第4 4章章 曲线积分与曲面积分曲线积分与曲面积分4.1 4.1 第一类曲线积分第一类曲线积分 4.2 4.2 第二类曲线积分第二类曲线积分4.3 Green4.3 Green公式及应用公式及应用4.4 4.4 第一类曲面积分第一类曲面积分4.5 4.5 第二类曲面积分第二类曲面积分4.6 Gauss4.6 Gauss公式与通量公式与通量4.7 Stokes公式及环量公式及环量与旋度与旋度一、问题的提出一、问题的提出实例实例: :曲线形构件的质量曲线形构件的质量oxyAB1 nMiM1 iM2M1M
2、),(ii L. sM 匀质之质量匀质之质量分割分割,121insMMM ,),(iiis 取取.),(iiiisM 求和求和.),(1 niiiisM 取极限取极限.),(lim10 niiiisM 近似值近似值精确值精确值4.14.1第一类曲线积分第一类曲线积分二、第一类曲线积分的概念二、第一类曲线积分的概念,),(,),(,),(,.,.),(,1121 niiiiiiiiiinsfsfisinLMMMLLyxfxoyL并作和并作和作乘积作乘积点点个小段上任意取定的一个小段上任意取定的一为第为第又又个小段的长度为个小段的长度为设第设第个小段个小段分成分成把把上的点上的点用用上有界上有界在
3、在函数函数面内一条光滑曲线弧面内一条光滑曲线弧为为设设1.定义定义oxyAB1 nMiM1 iM2M1M),(ii L.),(lim),(,),(,),(,010 niiiiLLsfdsyxfdsyxfLyxf即即记作记作线积分线积分第一类曲第一类曲上对弧长的曲线积分或上对弧长的曲线积分或在曲线弧在曲线弧则称此极限为函数则称此极限为函数这和的极限存在这和的极限存在时时长度的最大值长度的最大值如果当各小弧段的如果当各小弧段的被积函数被积函数积分弧段积分弧段积分和式积分和式曲线形构件的质量曲线形构件的质量.),( LdsyxM 2.存在条件:存在条件:.),(,),(存在存在对弧长的曲线积分对弧长
4、的曲线积分上连续时上连续时在光滑曲线弧在光滑曲线弧当当 LdsyxfLyxf3.推广推广曲线积分为曲线积分为上对弧长的上对弧长的在空间曲线弧在空间曲线弧函数函数 ),(zyxf.),(lim),(10iniiiisfdszyxf 注意:注意:)(,)(. 121LLLL 是分段光滑的是分段光滑的或或若若.),(),(),(2121 LLLLdsyxfdsyxfdsyxf.),(),(. 2 LdsyxfLyxf曲线积分记为曲线积分记为上对弧长的上对弧长的在闭曲线在闭曲线函数函数4.性质性质 .),(),(),(),()1( LLLdsyxgdsyxfdsyxgyxf).(),(),()2(为常
5、数为常数kdsyxfkdsyxkfLL .),(),(),()3(21 LLLdsyxfdsyxfdsyxf).(21LLL 三、第一类曲线积分的计算三、第一类曲线积分的计算定理定理)()()()(),(),(,)(),()(),(),(,),( dtttttfdsyxfttttytxLLyxfL22则则上上具具有有一一阶阶连连续续导导数数在在其其中中的的参参数数方方程程为为上上有有定定义义且且连连续续在在曲曲线线弧弧设设注意注意: :;. 1 一定要小于上限一定要小于上限定积分的下限定积分的下限.,),(. 2而是相互有关的而是相互有关的不彼此独立不彼此独立中中yxyxf特殊情形特殊情形.)
6、(:)1(bxaxyL .)(1)(,),(2dxxxxfdsyxfbaL )(ba 推广推广:)().(),(),(: ttztytx)()()()()(),(),(),(222 dtttttttfdszyxf.)(:)2(dycyxL .)(1),(),(2dyyyyfdsyxfdcL )(dc 例例1).(,sin,cos:,象限象限第第椭圆椭圆求求 tbytaxLxydsIL解解dttbtatbtaI2220)cos()sin(sincos dttbtattab222220cossincossin abduubaab222)cossin(2222tbtau 令令.)(3)(22baba
7、baab 例例2.)2, 1()2 , 1(,4:,2一段一段到到从从其中其中求求 xyLydsIL解解dyyyI222)2(1 . 0 例例3)20(.,sin,cos:, 的一段的一段其中其中求求kzayaxxyzdsI解解.21222kaka xy42 dkaka222sincos 20I例例4 . 0,22222zyxazyxdsxI为圆周为圆周其中其中求求解解 由对称性由对称性, 知知.222 dszdsydsx dszyxI)(31222故故 dsa32.323a ),2(球面大圆周长球面大圆周长 dsa四、几何与四、几何与物理意义物理意义,),()1(的线密度时的线密度时表示表示
8、当当Lyx ;),( LdsyxM ;,1),()2( LdsLyxf弧长弧长时时当当,),(),()3(处的高时处的高时柱面在点柱面在点上的上的表示立于表示立于当当yxLyxf.),( LdsyxfS柱面面积柱面面积sL),(yxfz ,)4(轴的转动惯量轴的转动惯量轴及轴及曲线弧对曲线弧对yx.,22LyLxdsxIdsyI曲线弧的重心坐标曲线弧的重心坐标)5(., LLLLdsdsyydsdsxx 五、小结五、小结1 1、第一类曲线积分的概念、第一类曲线积分的概念2 2、第一类第一类曲线积分的计算曲线积分的计算3 3、第一类第一类曲线积分的应用曲线积分的应用思考题思考题对弧长的曲线积分的
9、定义中对弧长的曲线积分的定义中 的符号的符号可能为负吗?可能为负吗?iS 思考题解答思考题解答iS 的符号永远为正,它表示弧段的长度的符号永远为正,它表示弧段的长度.一、一、 填空题填空题: :1 1、 已知曲线形构件已知曲线形构件L的线密度为的线密度为),(yx , ,则则L的质量的质量M= =_;2 2、 Lds= =_;3 3、 对对_的曲线积分与曲线的方向无关;的曲线积分与曲线的方向无关;4 4、 Ldsyxf),(= = dtttttf)()()(),(22中要中要求求 _ . .二、二、 计算下列求弧长的曲线积分计算下列求弧长的曲线积分: : 1 1、 Lyxdse22, ,其中其
10、中L为圆周为圆周222ayx , ,直线直线xy 及及x轴在第一象限内所围成的扇形的整个边界;轴在第一象限内所围成的扇形的整个边界;练习题练习题 2 2、 yzdsx2, ,其中其中L为折线为折线ABCD, ,这里这里DCBA, 依次为点依次为点(0,0,0)(0,0,0), ,(0,0,2),(1,0,2),(1,3,2)(0,0,2),(1,0,2),(1,3,2); 3 3、 Ldsyx)(22, ,其中其中L为曲线为曲线 )cos(sin)sin(costttaytttax )20( t; 4 4、计算、计算 Ldsy, ,其中其中L为双纽线为双纽线 )0()()(222222 ayx
11、ayx . .三、设螺旋形弹簧一圈的方程为三、设螺旋形弹簧一圈的方程为taxcos , ,taysin , ,ktz , ,其中其中 20t, ,它的线密度它的线密度222),(zyxzyx , ,求求: : 1 1、它关于、它关于Z轴的转动轴的转动ZI惯惯量量; 2 2、它的重心、它的重心 . .练习题答案练习题答案一、一、1 1、 Ldsyx),( ; 2 2、的的弧弧长长L; 3 3、弧长;、弧长; 4 4、 . .二、二、1 1、2)42( aea; 2 2、9 9; 3 3、)21(2232 a; 4 4、)22(22 a. .三、三、)43(32222222kakaaIz ; 22
12、22436kaakx ; 2222436kaaky ; 22222243)2(3kakakz . .oxyABL一、问题的提出一、问题的提出1 nMiM1 iM2M1Mix iy 实例实例: : 变力沿曲线所作的功变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),( 常力所作的功常力所作的功分割分割.),(,),(,1111110BMyxMyxMMAnnnn .)()(1jyixMMiiii .ABFW 4.2 4.2 第二类曲线积分第二类曲线积分求和求和. ),(),(1 niiiiiiiyQxP 取极限取极限. ),(),(lim10 niiiiiiiyQxPW 近似值近似
13、值精确值精确值,),(),(),(jQiPFiiiiii 取取,),(1iiiiiMMFW .),(),(iiiiiiiyQxPW 即即 niiWW1oxyABL1 nMiM1 iM2M1M),(iiF ix iy 二、第二类曲线积分的概念二、第二类曲线积分的概念,0.),(,).,;, 2 , 1(),(,),(),(.),(),(,11101111222111时时长度的最大值长度的最大值如果当各小弧段如果当各小弧段上任意取定的点上任意取定的点为为点点设设个有向小弧段个有向小弧段分成分成把把上的点上的点用用上有界上有界在在函数函数向光滑曲线弧向光滑曲线弧的一条有的一条有到点到点面内从点面内从
14、点为为设设 iiiiiiiiiiniinnnMMyyyxxxBMAMniMMnLyxMyxMyxMLLyxQyxPBAxoyL1.定义定义.),(lim),(,(),(,),(101iiniiLniiiixPdxyxPxLyxPxP 记作记作或称第二类曲线积分)或称第二类曲线积分)积分积分的曲线的曲线上对坐标上对坐标在有向曲线弧在有向曲线弧数数则称此极限为函则称此极限为函的极限存在的极限存在类似地定义类似地定义.),(lim),(10iiniiLyQdyyxQ ,),(),(叫做被积函数叫做被积函数其中其中yxQyxP.叫积分弧段叫积分弧段L2.存在条件:存在条件:.,),(),(第第二二类类
15、曲曲线线积积分分存存在在上上连连续续时时在在光光滑滑曲曲线线弧弧当当LyxQyxP3.组合形式组合形式 LLLdyyxQdxyxPdyyxQdxyxP),(),(),(),(.,jdyidxdsjQiPF 其其中中. LdsF4.4.推广推广 空间有向曲线弧空间有向曲线弧.),(lim),(10iiiniixPdxzyxP . RdzQdyPdx.),(lim),(10iiiniiyQdyzyxQ .),(lim),(10iiiniizRdzzyxR 5.5.性质性质.,)1(2121 LLLQdyPdxQdyPdxQdyPdxLLL则则和和分成分成如果把如果把则则有向曲线弧有向曲线弧方向相反
16、的方向相反的是与是与是有向曲线弧是有向曲线弧设设,)2(LLL 即对坐标的曲线积分与曲线的方向有关即对坐标的曲线积分与曲线的方向有关. LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(三、第二类曲线积分的计算三、第二类曲线积分的计算,),(),(, 0)()(,)(),(,),(,),(),(,),(),(22存在存在则曲线积分则曲线积分且且续导数续导数一阶连一阶连为端点的闭区间上具有为端点的闭区间上具有及及在以在以运动到终点运动到终点沿沿的起点的起点从从点点时时到到变变单调地由单调地由当参数当参数的参数方程为的参数方程为续续上有定义且连上有定义且连在曲线弧在曲线弧设设 L
17、dyyxQdxyxPttttBLALyxMttytxLLyxQyxP 定理定理dttttQtttPdyyxQdxyxPL)()(),()()(),(),(),( 且且特殊情形特殊情形.)(:)1(baxxyyL,终点为,终点为起点为起点为 .)()(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终点为,终点为起点为起点为 .),()(),(dyyyxQyxyyxPQdyPdxdcL 则则.,)()()(:)3( 终点终点起点起点推广推广ttztytx dtttttRttttQttttPRdzQdyPdx)()(),(),()()(),(),()()(),
18、(),( (4) 两类曲线积分之间的联系:两类曲线积分之间的联系:,)()( tytxL :设有向平面曲线弧为设有向平面曲线弧为,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点yxL LLdsQPQdyPdx)coscos(则则其中其中,)()()(cos22ttt ,)()()(cos22ttt (可以推广到空间曲线)(可以推广到空间曲线) ,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点zyx dsRQPRdzQdyPdx)coscoscos(则则 dstA rdA, dsAt可用向量表示可用向量表示,其中其中,RQPA ,cos,cos,cos t,dzdyd
19、xdstrd 有向曲线元;有向曲线元;.上的投影上的投影在向量在向量为向量为向量tAAt处的单位切向量处的单位切向量上点上点),(zyx 例例1.)1 , 1()1, 1(,2的一段弧的一段弧到到上从上从为抛物线为抛物线其中其中计算计算BAxyLxydxL 解解的定积分,的定积分,化为对化为对x)1(.xy OBAOLxydxxydxxydx 1001)(dxxxdxxx 10232dxx.54 xy 2)1, 1( A)1 , 1(B的定积分,的定积分,化为对化为对y)2(,2yx ABLxydxxydx 1122)(dyyyy. 11到到从从 y 1142dyy.54 xy 2)1, 1(
20、 A)1 , 1(B.)0 ,()0 ,()2(;)1(,2的直线段的直线段轴到点轴到点沿沿从点从点的上半圆周的上半圆周针方向绕行针方向绕行、圆心为原点、按逆时、圆心为原点、按逆时半径为半径为为为其中其中计算计算aBxaAaLdxyL 例例2解解,sincos:)1( ayaxL,变到变到从从 0)0 ,(aA)0 ,( aB 0原式原式 daa)sin(sin22 )0 ,(aA)0 ,( aB .343a , 0:)2( yL,变到变到从从aax aadx0原式原式. 0 问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同积分结果不同路径不同积分结果不
21、同. 03a)(cos)cos1(2 d 例例3).1 , 1(),0 , 1()0 , 0(,)3(;)1 , 1()0 , 0()2(;)1 , 1()0 , 0()1(,2222依次是点依次是点,这里,这里有向折线有向折线的一段弧的一段弧到到上从上从抛物线抛物线的一段弧的一段弧到到上从上从抛物线抛物线为为其中其中计算计算BAOOABBOyxBOxyLdyxxydxL 2xy )0 , 1(A)1 , 1(B解解.)1(的积分的积分化为对化为对 x, 10,:2变到变到从从xxyL 1022)22(dxxxxx原式原式 1034dxx. 1 ) 0 , 1 (A)1 ,1(B2yx .)2
22、(的积分的积分化为对化为对 y,10,:2变到变到从从yyxL 1042)22(dyyyyy原式原式 1045dxy. 1 )0 , 1(A)1 , 1(B)3( ABOAdyxxydxdyxxydx2222原式原式,上上在在 OA,10, 0变到变到从从xy 1022)002(2dxxxdyxxydxOA. 0 ,上上在在 AB,10, 1变变到到从从yx 102)102(2dyydyxxydxAB. 1 10 原原式式. 1 ) 0 , 1 (A)1 ,1(B问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同而积分结果相同路径不同而积分结果相同.四、小
23、结四、小结1、对坐标曲线积分的概念、对坐标曲线积分的概念2、对坐标曲线积分的计算、对坐标曲线积分的计算3、两类曲线积分之间的联系、两类曲线积分之间的联系思考题思考题 当曲线当曲线L的参数方程与参数的变化范围给定的参数方程与参数的变化范围给定之后之后(例如(例如L:taxcos ,taysin ,2 , 0 t,a是正常数),试问如何表示是正常数),试问如何表示L的方的方向向(如(如L表示为顺时针方向、逆时针方向)?表示为顺时针方向、逆时针方向)?思考题解答思考题解答曲线方向由参数的变化方向而定曲线方向由参数的变化方向而定.例如例如L:taxcos ,taysin ,2 , 0 t中中当当t从从
24、 0 变变到到 2时时,L取取逆逆时时针针方方向向;反反之之当当t从从 2变变到到 0 时时,L取取顺顺时时针针方方向向.一、一、 填空题填空题: :1 1、 对对_的曲线积分与曲线的方向有关;的曲线积分与曲线的方向有关;2 2、 设设0),(),( dyyxQdxyxPL, ,则则 LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(_;3 3、 在公式在公式 dyyxQdxyxPL),(),( dttttQtttP)()(,)()()(,)(中中, ,下下 限限对应于对应于L的的_点点, ,上限上限 对应于对应于L的的_点;点;4 4、两类曲线积分的联系是、两类曲线积分的联
25、系是_ _. .练练 习习 题题二、二、 计算下列对坐标的曲线积分计算下列对坐标的曲线积分: : 1 1、 Lxydx, ,L其中其中为圆周为圆周)0()(222 aayax及及 x轴所围成的在第一象限内的区域的整个边界轴所围成的在第一象限内的区域的整个边界( (按按 逆时针方向绕行逆时针方向绕行) ); 2 2、 Lyxdyyxdxyx22)()(, ,L其中其中为圆周为圆周 222ayx ( (按逆时针方向饶行按逆时针方向饶行) ); 3 3、 ydzdydx, ,其中为有向闭折线其中为有向闭折线ABCD, ,这里这里 的的CBA,依次为点依次为点(1,0,0),(0,1,0),(0,0,
展开阅读全文