第十一章 实数和二次根式-一 实数-11.4 无理数与实数-教案、教学设计-部级公开课-北京版八年级上册数学(配套课件编号:d086d).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第十一章 实数和二次根式-一 实数-11.4 无理数与实数-教案、教学设计-部级公开课-北京版八年级上册数学(配套课件编号:d086d).doc》由用户(老黑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十一章 实数和二次根式_一 实数_11.4 无理数与实数_教案、教学设计_部级公开课_北京版八年级上册数学配套课件编号:d086d 北京 年级 上册 数学 第十一 实数 二次 根式 _11 无理数 下载 _八年级上册_北京课改版_数学_初中
- 资源描述:
-
1、教学设计稿纸(第 1 页)【本学期第67个教案】授课课题11.4.1 无理数与实数无理数与实数授课时间第8周,第2课时课时计划本课题计划3课时,本节课为第1课时本节课型新授教学目标教学目标知识技能知识技能:1.了解无理数的意义,了解数系由有理数向实数扩展的过程;2.能用有理数估计一个无理数的大致范围;数学思考:数学思考:培养数感和估算能力;问题解决问题解决:通过拼图、折纸和画图等活动体验数学的发展源于实际,又作用于实际的辩证关系;情感态度情感态度:经历无理数的探索过程,体会无理数引入的必要性,在一系列探究活动中,体会数系的扩展过程,提高数学素养,形成科学的思维方式.重点难点重点难点重点重点:通
2、过实际操作,理解无理数的概念和它的本质特征无限不循环小数;难点:难点:探究无理数的无限不循环特性.教学方法教学方法小组合作探究小组合作探究是否要录课是否要录课是是器材资源器材资源边长为1dm的正方形纸片两张,边长为2dm的正方形纸片一张,剪刀是否用多媒体是否用多媒体是是板书设计板书设计11.4 无理数无理数124124122即教学过程教学过程师生活动师生活动设计意图设计意图一、一、创设情境创设情境提出问题提出问题问题问题 1:2 的算数平方根是多少?问题问题 2 2:生活中能否找到2?探究活动一:寻找2如何通过面积为 1 和 4 的正方形纸片构造出2?方案 1:利用面积为 1 的两个正方形纸片
3、拼图;方案 2:利用面积为 4 的正方形纸片折叠.通过构造面积为 2 的正方形的探究活动, 求出面积为2 的正方形边长,引出了长度2,使学生感受2的客观存在性,为认识2提供实际研究对象.为在数轴上表示2做好铺垫.无无理数:无限不循环小数.2,3,5-,353,有理数整数分数实数教学设计稿纸(第 2 页)教学过程教学过程师生活动师生活动设计意图设计意图二、二、问题引领问题引领探究新知探究新知探究活动二:认识2问题问题 3 3:2是有理数吗?为什么?(1)有理数按组成可以怎样分类?(2)判断分析:从有理数组成的两个部分说明:1.是否是整数;2.是否是分数.我们可以通过测量,发现2是 1.5 左右的
4、数,也 可 以 结 合 三 个 正 方 形 面 积 进 行 推 理124 124122即 ,综上,我们知道2介于整数 1 和 2 之间,所以2不是整数,而是小数小数.如果2是分数的话,分数的平方还是一个分数,而2的平方是 2,所以2不是分数不是分数,分数可以化为有限小数或无限循环小数.小结:小结:2不是有理数.问题问题 4 4:2多大?学生独立思考,小组合作探究.方法 1:测量法判断方法 2:结合图形,借助计算器估算1.9622.251.9622.251.421.5即1.988122.01641.988122.01641.4121.42即小结:小结:条件允许的话,我们可以借助计算机找到比2 小
5、的完全平方数和比 2 大的完全平方数,通过对通过引导学生分析2不是有理数,以及对分数都可以化为有限小数和无限循环小数的分析,让学生初步感受2的无限不循环性.通过探究2有多大让学生知道有限小数只是2的近似值,或是用来表示2大致范围的.进一步体会2的无限不循环性.有理数整数分数教学设计稿纸(第(第 3 页)页)教学过程教学过程教师主导与预设活动教师主导与预设活动学生主体与期望活动学生主体与期望活动三个数求算术平方根,估计出2更精确的范围.我们用有理数可以表示它的近似值.观察观察:请大家打开教材 37 页,看章前图2的小数点后 464 位排成的“回”形图,感受一下这个无限不循环小数.无理数概念:无理
展开阅读全文
链接地址:https://www.163wenku.com/p-2006258.html