书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型浙教版八年级上册数学第2章 特殊三角形-2.7 探索勾股定理-教案、教学设计-部级公开课-(配套课件编号:b0435).docx

  • 上传人(卖家):老黑
  • 文档编号:2005251
  • 上传时间:2021-12-30
  • 格式:DOCX
  • 页数:6
  • 大小:438.15KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《浙教版八年级上册数学第2章 特殊三角形-2.7 探索勾股定理-教案、教学设计-部级公开课-(配套课件编号:b0435).docx》由用户(老黑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    浙教版八年级上册数学第2章 特殊三角形_2.7 探索勾股定理_教案、教学设计_部级公开课_配套课件编号:b0435 浙教版八 年级 上册 数学 特殊 三角形 _2 探索 勾股定理 教案 教学 设计 下载 _八年级上册_浙教版_数学_初中
    资源描述:

    1、第 1 页探索勾股定理教学设计探索勾股定理教学设计浙教版教材八年级上册第二章第 7 节一、教学内容分析一、教学内容分析勾股定理是平面几何有关度量的最基本定理,它从边的角度刻画了直角三角形的特征学习勾股定理是进一步认识和理解直角三角形的需要,也是后续有关代数学习(如无理数的认识)和几何度量运算(如自然引申是一般三角形的余弦定理和平面解析几何中两点间距离公式)的必要基础勾股定理把形的特征(三角形中有一个角是直角)转化成数量关系:直角三角形中斜边的平方等于两直角边的平方和,这也就搭建了几何图形与数量关系之间的桥梁对于勾股定理,可以从数量的角度认识,也可以从几何的角度来认识:直角三角形中,以斜边为边长

    2、的正方形面积等于两个以直角边为边长的正方形的面积之和勾股定理的证明,通过几何拼图去证明数量关系,将“数”转化为“形”;证明过程中,又针对几何关系建立了代数等量关系,进行代数运算,将“形”回归到“数”,多次进行数和形的转化是数形转化充分运用的体现勾股定理有不下 500 种证明方法,这些方法为训练学生几何直观能力、符号运算能力、对角度解决问题的能力以及发展学生数学思维提供了很好的素材同时,勾股定理多种证明方法的历史背景是数学文化的宝贵财富,勾股定理的历史文化价值也是学生体会数学文化重要素材二、学生情况分析二、学生情况分析知识方面,学生已经理解直角三角形中三个角的关系,勾股定理揭示的三边关系正是直角

    3、三角形相关知识的承接和延续学生已经学完全等三角形的证明,可以明确直角三角形斜边随着两直角边的确定而确定,这为勾股定理的探索提供了理论保证能力方面,结束初一进入初二的学生已在七年级的学习中,经历过一些操作性活动和探究性活动,在教师适当的引导提示下,学生具有探究勾股定理的能力,因此可尝试让学生经历勾股定理的猜想和证明过程,在探究过程中进一步丰富学生的数学活动经验,发展学生的推理能力三、教学目标和教学重难点三、教学目标和教学重难点教学目标:教学目标:1. 通过学生从观察实验猜想勾股定理到操作活动证明勾股定理, 引导学生经历“获得猜想证明定理归纳总结”的过程,在此过程中,熟悉勾股定理公式,理解等面积法

    4、,体会数形转化思想2. 通过鼓励学生多种方法证明勾股定理,多角度解决问题,发展学生的几何直观,训练学生的符号运算能力,提升学生数学思维3. 通过实验对勾股定理的再发现、活动探究证明勾股定理、视频赏析了解勾股定理的历史证明方法,激发学生学习数学的热情和自信心,让学生了解勾股定理历史文化,渗透数学文化价值教学重点:教学重点:勾股定理的再发现;勾股定理证明方法的探索教学难点:教学难点:勾股定理证明方法的探索四、教学准备四、教学准备教师用具:勾股定理注水验证视频、几何画板教学素材(直角三角形三边数量关系验证) 、勾第 2 页股定理证明赏析微视频(2min) 、磁铁、记号笔、三角尺学生用具:学案、直尺、

    5、笔、5 个全等的等腰直角三角形,5 个全等的直角三角形,6 个正方形(4 个以直角边为边长,2 个以斜边为边长) ,网格纸五、教学过程五、教学过程教学教学环节环节教学内容教学内容教师引导教师引导学生反馈学生反馈/活动活动设计设计意图意图创设创设情境情境引入引入课题课题展示学校食堂草坪照片老师这里有一张照片,大家看一下这是哪里?预期反馈:学校食堂从贴近学生生活的情境引入,激发学生的好奇心,引入课题情境:每天中午和下午的时候,大家都会以百米冲刺的速度冲向这里冲刺过程中,会遇到一个带直角转弯的草坪绝大部分同学会沿着草坪外面走(展示路径) ,极个别同学走捷径(展示路径) ,从草坪上跑过去我们把路径从实

    6、际问题中抽离出来就形成了一个直角三角形(展示) ,老师某天去走了一下,沿着草坪竖着走需要 12步 (展示) ,横着走需要 5 步(展示) ,走捷径的同学到底能节约几步(展示)?方案 1:学生不知道如何求解教师引导: 这个问题中我们已知直角三角形的两直角边, 求直角三角形的斜边 斜边确定吗?理论依据是什么?(SAS)斜边由直角边确定,那么斜边和直角边有怎样的数量关系呢?老师这里有一个神秘的模型,看一看它能不能给我们点启发方案 2:学生说出三边的平方关系,能够计算(板书) 提问: 这个关系是怎么来的呢?任意直角三角形都可以这样计算吗?我们如何验证呢?引导:从数量上不好验证,能否从几何角度验证.平方

    7、关系的几何意义是什么呢?(正方形面积) 获得猜想数量关系:222abc;几何意义:123SSS老师这里有一个模型,刚好是黑板上所画的形状观察观察思考思考勾股定理模型注水实验方案 1:学生不知道勾股定理实验前:介绍模具两个小正方形中的水灌向大正方形,水会多出来还是不够呢?实验后:实验结果说明了什么?猜想直角三角形三边可能具有怎样的关系?实验前, 学生猜测两个小正方形的水往大正方形里面灌, 结果会如何学生进行实验实验后, 学生讲解从实验中 获 得 的 结 论 :123VVV,123SSS,222abc利用实体实验和几何画板实验引入, 激发学生学习兴趣, 针对不知道勾股定理的情况, 促使学生从方案

    8、2:学生知道勾股定理实验前:按照刚才猜实验前, 猜测两个小正方形的水往大正方形第 3 页获 得获 得(验验证证)猜猜想想实验中获得猜想, 针对知道勾股定理的情况, 验证猜想想,当两个小正方形中的水灌向大正方形,水会多出来还是不够呢?实验后:是否验证了猜想?里面灌, 结果会如何 学生进行实验实验后,学生判断是否验证成功几何画板列举实验动画展示几个直角三角形,观察以直角三角形三边为边长正方形面积关系我们利用一个特殊的直角三角形,获得(验证)了猜想,其他直角三角形是否适用呢?我们通过几何画板再多观察(验证)几个直角三角形学生提出改变哪条直角边的边长, 进一步进行观察,验证猜想方案 1:获得猜想(板书

    9、)数量关系:222abc;几何意义:123SSS通过观察,猜想直角三角形三边的关系如何?其几何意义是怎样的?(板书)猜想: 直角三角形直角边为 a、b,斜边为 c,则222abc,几何意义:123SSS,其中12,S S是以直角边为边长的正方形面积探 究探 究讨论讨论证 明证 明猜想猜想通过实验,我们只是获得(验证)猜想,要想以后放心大胆的使用它,我们还需要严格的数学证明探究活动 1:请合理选择所提供的实验工具,小组讨论,设计一个方案证明勾股定理工具:直尺、笔、5 个全等的等腰直角三角形,5个全等的直角三角形,6个正方形(4 个以直角边为边长,2 个以斜边为边长) ,网格纸要求:1. 讨论时,

    10、6-7 人为一组,分工选择不同工我们可以想办法推导证明 三 边 的 数 量 关 系222abc, 也可以选择画出黑板上的图形,证明直角三角形三边为边长的正方形之间的面积关系明确验证勾股定理的证明方向引导:你们觉得这个证明怎么样?有什么好处,有什么弊端?方法 1. 利用正方形和等腰直角三角形剪拼证明123SSS学生点评: 优势直观 弊端只能证明等腰直角三角形成立利用操作活动, 让学生探究勾股定理的证明, 激发学生的学习兴趣, 发展学生的几何直观学生互相点评方法,引导:你们觉得这个证明怎么样?有什么好处,有方法 2. 利用网格纸,数格子或分割算出三第 4 页具,设计证明方案;2. 将证明过程简要记

    11、录在学案相应展示区域;3. 展示时, 两名小组成员为代表,一人展示,一人讲解充分感受各种方法,体现以学生为主体的学习过程什么弊端?个正方形的面积, 证明123SSS学生点评: 优势方便计算; 弊端只能证明顶点在格点的直角三角形引导:这个方法证明了勾股定理对所有直角三角形成立吗?你认为该证明最精彩点在哪里?总结:用两种方法计算同一图形的面积等面积法的使用;通过几何直观拼图去证明数量关系, 将“数”转化为“形”;通过把几何面积关系转化为代数等量关系,进行代数运算,将“形”回归到“数”, 数和形的有效转化方法 3. 拼图证明222abcab学生点评: 几何回归代数, 用不同的方法计算正方形面积, 建

    12、立等量关系, 代数化简后得到结论举 一举 一反三反三发 散发 散思维思维探究活动 2: 请小组讨论,拼一拼或者画一画,设计构造合适的图形,利用不同方法计算其面积,建立等量关系,发现更多勾股定理的证明方法工具:直尺、笔、5 个全等的直角三角形,3 个正方形(2 个以直角边为边长,1 个以斜边为边长)要求:1. 讨论时,6-7 人为一组,构造图形证明定理; 2. 将证明过程简要记录在学案上;3. 展示时,学生可能出现的拼图证明:222cabab221112222abcab222112222ababcab基于探究活动 1 提出的证明方法, 学生举一反三,讨论探究,挖掘更多的证明方法, 以此提升学生的

    13、数学思维第 5 页两名小组成员为代表,一人展示,一人讲解勾股定理几种证明方法赏析刚才同学们已经提出了多种证明勾股定理的方法,你知道勾股定理证明方法有多少种吗?事实上,证明方法不下500 种,我们通过一个简短的微课赏析其中几种证明方法学生猜测勾股定理证明方法种数展示勾股定理多种证明, 引发学生对数学文化的思考总 结总 结提炼提炼感 悟感 悟所得所得知识总结通过本节课,你得到了怎样的结论?生: 直角三角形中, 斜边的平方等于两直角边的平方和师: 事实上, 我们之前学习了直角三角形中三个角的关系, 今天又了解了直角三角形三条边的数量关系, 之后的学习中, 我们还会了解直角三角形边和角之间的关系总结归

    14、纳本节课所学的知识和方法, 知识方面, 构建知识体系, 方法方面, 渗透数形结合思想方法感悟在证明过程中, 给你留下印象较深的方法或者感受是什么?生:对知识的理解从几何和代数两方面理解,证明过程中数形的转化生:等面积法师:多角度思考问题,数形转化思想总结:探索并证明勾股定理的过程,让我们得到了直角三角形三边的关系,同时,对勾股定理的证明也是对思维的训练,印证了英国哲学家培根的名言“数学是思维的体操”回 归回 归情境情境解 决解 决问题问题回到本节课情境问题引导:走捷径到底会节约几步?对于结果你有什么感受?节约 4 步,只有 4 步,一两秒的事情, 所以没有必要穿越草坪, 遵守公德回归引入,首尾

    15、呼应,解决问题,感受道德第 6 页六、板书设计六、板书设计七七、教学、教学反思反思通过对教学设计和课堂教学等进行了精心的准备、修正和打磨,自己很多方面都有了成长本节课较大的优势体现在以下几个方面首先,教学环节设计环环相扣,自然衔接教学设计思路:引入环节(课题研究的必要性)猜想环节(实验观察获得猜想)证明环节(证明猜想总结证明方法)发散环节(运用方法挖掘学生思维)总结环节(感悟所得) 课堂教学中,环节进行流畅,每个环节的时间分配和整体时间控制得当,重点体现突出在重点环节(证明环节和发散环节)用时约 25min,超过整个课堂比重的 60%其次,设计学生小组探究、学生展示、学生互评等活动,充分体现了

    16、以学生为主体的学习过程,同时,充分考虑学生预期反馈,方便教学时及时应对课堂教学中,我只负责引导,通过引导语和设问调动学生思考积极性,学生在活动中收获知识,发展数学思维,提升数学表达能力和动手操作能力第三,设计精选引入背景材料、实验、数学史微视频,渗透数学文化,激发学生数学学习兴趣,调动学生学习积极性课堂首尾均采用学生熟悉生活场景,首尾呼应,从引入到利用所学知识解决和探讨实际生活问题,简单运用知识,并引发学生公德心的思考课堂教学中,学生对这些材料都表现出了浓厚的兴趣,达到了预期效果通过本节课,我更多的看到了自己还需完善的地方首先,日常教学中可以逐渐完善数学实验的模具整理本节课一大遗憾之处在于注水

    17、实验没能在课堂中让学生实际操作,让学生近距离观察,在自己操作中进行感悟,获得猜想归其原因,平时教学的时候很少注重数学实验的准备,对于数学实验思考和积累较少,待到需要用的时候来不及准备在之后的教学中,应该注重模具的收集和积累其次,针对学生回答和展示后,点评不足在“证明环节”过程中,学生完成证明后可以及时总结定理,并从数学语言和文字语言两方面处理,学生回答问题后,点评应该有更多的鼓励性,尤其是缺乏对学生回答精彩点的提炼和表扬学生展示时,板书不太规范,应及时在板书上进行圈画补充修正,提炼主要方法,理清思路第三,课堂的应急处理有待提高小组讨论时,应关注每一个学生是否积极参与活动,对没有思路的小组应该及时调动组织在展示前,应提前给学生指明展示区域,学生的展示贴图混乱时,学生展示完后,可以及时挪动贴图,将板书贴图规范展示过程中,有一组的展示使之前的展示贴图掉落,之后总结方法时,应该将展示还原,展现板书的完整性教学是一门遗憾的艺术,教师只有不断地在反思中消除遗憾,才能不断地改进、完善教学,不断地提高教学水平教学教育的真理,让我苦苦地思考, “路漫漫其修远兮,吾将上下而求索” 勾股定理勾股定理几何意义:312SSS数量关系:222cab直角三角形斜边的平方等于两直角边的平方和直角三角形斜边的平方等于两直角边的平方和猜想证明展示区域

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:浙教版八年级上册数学第2章 特殊三角形-2.7 探索勾股定理-教案、教学设计-部级公开课-(配套课件编号:b0435).docx
    链接地址:https://www.163wenku.com/p-2005251.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库