书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型广东省2021-2022学年高一上学期第一次月考数学试题含解析.doc

  • 上传人(卖家):风予禄
  • 文档编号:1988071
  • 上传时间:2021-12-25
  • 格式:DOC
  • 页数:33
  • 大小:1.30MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《广东省2021-2022学年高一上学期第一次月考数学试题含解析.doc》由用户(风予禄)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省 2021 2022 学年 上学 第一次 月考 数学试题 解析 下载 _考试试卷_数学_高中
    资源描述:

    1、试卷主标题试卷主标题姓名:_ 班级:_考号:_一、选择题(共一、选择题(共 2323 题)题)1、 设函数,则的值为A B C D 2、 若集合、,满足,则A与C之间的关系为( )A B C D 3、 设函数,则的值为A B C D 4、 直线与的交点组成的集合是( )A B C D 5、 直线与的交点组成的集合是( )A B C D 6、 函数的值域是( )A B C D 7、 函数的值域是( )A B C D 8、 若的解集为,则的值分别是( )A 1 , 2 B 1 , -2 C -1 , -2 D -1 , 29、 若的解集为,则的值分别是( )A 1 , 2 B 1 , -2 C -

    2、1 , -2 D -1 , 210、 若,则的最大值是( )A B C D 11、 若,则的最大值是( )A B C D 12、 已知:,那么命题的一个必要非充分条件是( )A B C D 13、 已知:,那么命题的一个必要非充分条件是( )A B C D 14、 设函数在上有定义,对于任一给定的正数,定义函数,则称函数为的 “界函数 ” ,若给定函数,则下列结论不成立的是A B C D 15、 设函数在上有定义,对于任一给定的正数,定义函数,则称函数为的 “界函数 ” ,若给定函数,则下列结论不成立的是A B C D 16、 对于任意实数a ,b,c,d ,有以下四个命题,其中正确的是( )

    3、A 若,则B 若,则C 若,则D 若,则17、 对于任意实数a ,b,c,d ,有以下四个命题,其中正确的是( )A 若,则B 若,则C 若,则D 若,则18、 下列各选项给出的两个函数中,表示相同函数的有( )A 与B 与C 与D 与19、 下列各选项给出的两个函数中,表示相同函数的有( )A 与B 与C 与D 与20、 给出下列四个对应,其中构成函数的是A B C D 21、 给出下列四个对应,其中构成函数的是A B C D 22、 下列说法中正确的有( )A 不等式恒成立 B 存在,使得不等式成立C 若,则D 若正实数,满足,则23、 下列说法中正确的有( )A 不等式恒成立 B 存在,

    4、使得不等式成立C 若,则D 若正实数,满足,则二、填空题(共二、填空题(共 8 8 题)题)1、 命题 “” 的否定是 _ .2、 命题 “” 的否定是 _ .3、 函数的定义域是 _.4、 函数的定义域是 _.5、 已知二次函数的图象的顶点坐标为,且过点,则该二次函数的解析式是_.6、 已知二次函数的图象的顶点坐标为,且过点,则该二次函数的解析式是_.7、 已知关于的不等式恒成立,则的取值范围为 _8、 已知关于的不等式恒成立,则的取值范围为 _三、解答题(共三、解答题(共 1212 题)题)1、 已知集合,求:;2、 已知集合,求:;3、 已知函数的图象如图所示,其中轴的左侧为一条线段,右

    5、侧为某抛物线的一段( 1 )写出函数的定义域和值域;( 2 )求的值4、 已知函数的图象如图所示,其中轴的左侧为一条线段,右侧为某抛物线的一段( 1 )写出函数的定义域和值域;( 2 )求的值5、 已知,若,求实数的取值范围6、 已知,若,求实数的取值范围7、 已知命题:集合至多有两个子集,命题:,若是的充分不必要条件,求实数的取值范围8、 已知命题:集合至多有两个子集,命题:,若是的充分不必要条件,求实数的取值范围9、 某工厂生产某种产品的年固定成本为 250 万元,每生产x千件,需另投入成本,当年产量不足 80 千件时,(万元);当年产量不小于 80 千件时,(万元) . 通过市场分析,若

    6、每件售价为 500 元时,该厂年内生产该商品能全部销售完 .( 1 )写出年利涧L(万元)关于年产量x(千件)的函数解析式;( 2 )年产量为多少千件时,该厂在这一商品的生产中所获利润最大?10、 某工厂生产某种产品的年固定成本为 250 万元,每生产x千件,需另投入成本,当年产量不足 80 千件时,(万元);当年产量不小于 80 千件时,(万元) . 通过市场分析,若每件售价为 500 元时,该厂年内生产该商品能全部销售完 .( 1 )写出年利涧L(万元)关于年产量x(千件)的函数解析式;( 2 )年产量为多少千件时,该厂在这一商品的生产中所获利润最大?11、 已知,若,解不等式;若不等式对

    7、一切实数 x 恒成立,求实数 a 的取值范围;若,解不等式12、 已知,若,解不等式;若不等式对一切实数 x 恒成立,求实数 a 的取值范围;若,解不等式=参考答案参考答案=一、选择题一、选择题1、 A【详解】因为时,所以;又时,所以故选 A.本题考查分段函数的意义 , 函数值的运算 .2、 C【分析】根据已知条件得出集合之间的关系,即可得出正确选项【详解】,对于选项 A :时不成立 ;对于选项、显然错误 .故选:【点睛】本题主要考查了集合的交并运算,集合间的关系,属于基础题 .3、 A【详解】因为时,所以;又时,所以故选 A.本题考查分段函数的意义 , 函数值的运算 .4、 D【分析】联立,

    8、可求出两直线的交点,进而可选出答案 .【详解】联立,解得,即.故直线与的交点组成的集合是.故选: D.【点睛】本题考查集合元素的辨析,直线与直线的交点是有序实数对,属于基础题 .5、 D【分析】联立,可求出两直线的交点,进而可选出答案 .【详解】联立,解得,即.故直线与的交点组成的集合是.故选: D.【点睛】本题考查集合元素的辨析,直线与直线的交点是有序实数对,属于基础题 .6、 B【分析】求得的取值范围,根据不等式的基本性质可求得原函数的值域 .【详解】因为,所以,因此,函数的值域是.故选: B.【点睛】本题考查函数值域,考查基本分析求解能力,属基本题 .7、 B【分析】求得的取值范围,根据

    9、不等式的基本性质可求得原函数的值域 .【详解】因为,所以,因此,函数的值域是.故选: B.【点睛】本题考查函数值域,考查基本分析求解能力,属基本题 .8、 B【分析】根据不等式解集,求得不等式对应方程的根,即可利用韦达定理求得结果 .【详解】因为的解集为,故为方程的两根,故可得,即.故选:.【点睛】本题考查由一元二次不等式的解集求参数值,属简单题 .9、 B【分析】根据不等式解集,求得不等式对应方程的根,即可利用韦达定理求得结果 .【详解】因为的解集为,故为方程的两根,故可得,即.故选:.【点睛】本题考查由一元二次不等式的解集求参数值,属简单题 .10、 A【分析】根据题意,由,结合基本不等式

    10、,即可求出结果 .【详解】因为,故,则,当且仅当,即时,等号成立;故选: A.【点睛】本题主要考查由基本不等式求积的最大值,熟记基本不等式即可,属于常考题型 .11、 A【分析】根据题意,由,结合基本不等式,即可求出结果 .【详解】因为,故,则,当且仅当,即时,等号成立;故选: A.【点睛】本题主要考查由基本不等式求积的最大值,熟记基本不等式即可,属于常考题型 .12、 B【分析】先解不等式求出,然后结合选项根据必要不充分条件的概念即可判断 .【详解】因为,所以,然后结合选项根据必要不充分条件的概念可判断,故选: B.13、 B【分析】先解不等式求出,然后结合选项根据必要不充分条件的概念即可判

    11、断 .【详解】因为,所以,然后结合选项根据必要不充分条件的概念可判断,故选: B.14、 B【详解】根据题意写成,的分段函数形式即, A.,故 A 成立; B, 故 B 不成立; C :, 故 C 成立; D,故 D 成立;所以只有 B 结论不正确,故选 B.点睛:本题属创新类型的函数定义题,主要考察学生的理解能力;本题属创新类型的函数定义题此题的关键在于理解函数的定义,则根据给定定义写成,的分段函数形式即.15、 B【详解】根据题意写成,的分段函数形式即, A.,故 A 成立; B, 故 B 不成立; C :, 故 C 成立; D,故 D 成立;所以只有 B 结论不正确,故选 B.点睛:本题

    12、属创新类型的函数定义题,主要考察学生的理解能力;本题属创新类型的函数定义题此题的关键在于理解函数的定义,则根据给定定义写成,的分段函数形式即.16、 BD【分析】( 1 )可举反例证明不正确 . ( 2 )因为成立,则. ( 3 )为正数,为负数时不成立 . ( 4 )因为,则,所以.【详解】A 选项:,但是, A 不正确;B 选项:因为成立,则,那么, B 正确;C 选项:,但是, C 不正确;D 选项:因为,则,又,所以, D 正确 .故选: BD【点睛】此题考查不等式比较大小,一般可通过特值法证伪判错,属于简单题目 .17、 BD【分析】( 1 )可举反例证明不正确 . ( 2 )因为成

    13、立,则. ( 3 )为正数,为负数时不成立 . ( 4 )因为,则,所以.【详解】A 选项:,但是, A 不正确;B 选项:因为成立,则,那么, B 正确;C 选项:,但是, C 不正确;D 选项:因为,则,又,所以, D 正确 .故选: BD【点睛】此题考查不等式比较大小,一般可通过特值法证伪判错,属于简单题目 .18、 ABC【分析】依次计算每个函数的定义域和解析式,判断得到答案 .【详解】A :,定义域为 R ,定义域为 R ,相同函数;B :,定义域为 R ,定义域为 R ,相同函数;C :,定义域均为,相同函数;D :定义域为,定义域为 R ,不是相同函数 .故选: ABC.【点睛】

    14、本题考查了相同函数的判断,确定函数定义域和解析式是解题的关键 .19、 ABC【分析】依次计算每个函数的定义域和解析式,判断得到答案 .【详解】A :,定义域为 R ,定义域为 R ,相同函数;B :,定义域为 R ,定义域为 R ,相同函数;C :,定义域均为,相同函数;D :定义域为,定义域为 R ,不是相同函数 .故选: ABC.【点睛】本题考查了相同函数的判断,确定函数定义域和解析式是解题的关键 .20、 AD【分析】本题可通过每一个自变量是否有唯一的数字与之对应来判断是否可以构成函数 .【详解】A 项:每一个自变量都有唯一的数字与之对应,可以构成函数, A 正确;B 项:自变量没有对

    15、应的数字,不能构成函数, B 错误;C 项:自变量同时对应了两个数字,不能构成函数, C 错误;D 项:每一个自变量都有唯一的数字与之对应,可以构成函数, D 正确,故选: AD.【点睛】关键点点睛:本题考查函数的定义,需考虑是否满足定义域中的每一个元素是否通过这个对应关系都有唯一的一个元素与之对应,是中档题 .21、 AD【分析】本题可通过每一个自变量是否有唯一的数字与之对应来判断是否可以构成函数 .【详解】A 项:每一个自变量都有唯一的数字与之对应,可以构成函数, A 正确;B 项:自变量没有对应的数字,不能构成函数, B 错误;C 项:自变量同时对应了两个数字,不能构成函数, C 错误;

    16、D 项:每一个自变量都有唯一的数字与之对应,可以构成函数, D 正确,故选: AD.【点睛】关键点点睛:本题考查函数的定义,需考虑是否满足定义域中的每一个元素是否通过这个对应关系都有唯一的一个元素与之对应,是中档题 .22、 BCD【分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断 .【详解】解:不等式恒成立的条件是,故 A 不正确;当为负数时,不等式成立 . 故 B 正确;由基本不等式可知 C 正确;对于,当且仅当,即,时取等号,故 D 正确 .故选: BCD.23、 BCD【分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断 .【详解】解:不等式恒成立的条件是,故

    17、 A 不正确;当为负数时,不等式成立 . 故 B 正确;由基本不等式可知 C 正确;对于,当且仅当,即,时取等号,故 D 正确 .故选: BCD.二、填空题二、填空题1、.【分析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题 “” 的否定为“” 故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定本题考查特称命题的否定,属于简单题2、.【分析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题 “” 的否定为“” 故答案为【点睛】对于含有量词的命题的否定要

    18、注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定本题考查特称命题的否定,属于简单题3、【分析】函数的定义域满足,解得答案 .【详解】函数的定义域满足:,解得.故答案为:.【点睛】本题考查了函数定义域,属于简单题 .4、【分析】函数的定义域满足,解得答案 .【详解】函数的定义域满足:,解得.故答案为:.【点睛】本题考查了函数定义域,属于简单题 .5、【分析】设二次函数为,代入点求解即可 .【详解】因为二次函数的图象的顶点坐标为,所以设,代入点,可得,解得,所以函数解析式为故答案为:【点睛】本题主要考查了待定系数法求二次函数的解析式,考查了二次函数的性质,属于中

    19、档题 .6、【分析】设二次函数为,代入点求解即可 .【详解】因为二次函数的图象的顶点坐标为,所以设,代入点,可得,解得,所以函数解析式为故答案为:【点睛】本题主要考查了待定系数法求二次函数的解析式,考查了二次函数的性质,属于中档题 .7、【分析】当时,不等式恒成立,当时,由,即可求解 .【详解】当时,不等式恒成立,所以符合题意;当时,若关于的不等式恒成立,则,解得:,综上所述的取值范围为:,故答案为:.8、【分析】当时,不等式恒成立,当时,由,即可求解 .【详解】当时,不等式恒成立,所以符合题意;当时,若关于的不等式恒成立,则,解得:,综上所述的取值范围为:,故答案为:.三、解答题三、解答题1

    20、、,【分析】直接计算交集并集补集得到答案 .【详解】,则,或,.【点睛】本题考查了交并补运算,属于简单题 .2、,【分析】直接计算交集并集补集得到答案 .【详解】,则,或,.【点睛】本题考查了交并补运算,属于简单题 .3、 ( 1 )定义域为,值域为,;( 2 ) -1.【分析】( 1 )由图像直接得到定义域和值域;( 2 )先求出解析式,再直接代入求的值 .【详解】解:( 1 )由图象可知,函数的定义域为,值域为,;( 2 )当,时,设,将,代入可得,解得,即,当,时,设,将点代入可得,解得,( 1 )4、 ( 1 )定义域为,值域为,;( 2 ) -1.【分析】( 1 )由图像直接得到定义

    21、域和值域;( 2 )先求出解析式,再直接代入求的值 .【详解】解:( 1 )由图象可知,函数的定义域为,值域为,;( 2 )当,时,设,将,代入可得,解得,即,当,时,设,将点代入可得,解得,( 1 )5、【分析】对是否为空集进行分类讨论,由此求得的取值范围 .【详解】依题意,当时,当时,综上所述的取值范围为.6、【分析】对是否为空集进行分类讨论,由此求得的取值范围 .【详解】依题意,当时,当时,综上所述的取值范围为.7、【分析】求得中的取值范围,根据是的充分不必要条件求得的取值范围 .【详解】对于命题,依题意知, ,令:,:,是的充分不必要条件,解得,因此实数的取值范围是8、【分析】求得中的

    22、取值范围,根据是的充分不必要条件求得的取值范围 .【详解】对于命题,依题意知, ,令:,:,是的充分不必要条件,解得,因此实数的取值范围是9、 ( 1 )L(x) ( 2 ) 100【分析】( 1 )分别求出 0 x80 、x80 时L(x) 的解析式,最后用分段函数表示即得解;( 2 )分别借助二次函数的最值和均值不等式求出 0 x80、 x80 时L(x) 的最大值,比较即可得到答案 .【详解】( 1 )当 0 x80 ,xN*时,L(x) x2 10 x 250 x2 40 x 250 ,当x80 ,xN*时,L(x) 51x 1 450 250 1 200 ,L(x) .( 2 )当

    23、0 x950 ,综上所述,当x 100 时,L(x) 取得最大值 1 000 ,即年产量为 100 千件时,该厂在这一商品的生产中所获利润最大10、 ( 1 )L(x) ( 2 ) 100【分析】( 1 )分别求出 0 x80 、x80 时L(x) 的解析式,最后用分段函数表示即得解;( 2 )分别借助二次函数的最值和均值不等式求出 0 x80、 x80 时L(x) 的最大值,比较即可得到答案 .【详解】( 1 )当 0 x80 ,xN*时,L(x) x2 10 x 250 x2 40 x 250 ,当x80 ,xN*时,L(x) 51x 1 450 250 1 200 ,L(x) .( 2

    24、)当 0 x950 ,综上所述,当x 100 时,L(x) 取得最大值 1 000 ,即年产量为 100 千件时,该厂在这一商品的生产中所获利润最大11、 ( 1 )解集为,或;( 2 ) a 的范围为;( 3 )见解析 .【详解】分析 : ( 1 )当 a=1 ,不等式即( x+2 )( x 1 ) 0 ,解此一元二次不等式求得它的解集 ; ( 2 )由题意可得( a+2 ) x2+4x+a 1 0 恒成立,当 a= 2 时,显然不满足条件,故有,由此求得 a 的范围 ; ( 3 )若 a 0 ,不等式为 ax2+x a 1 0 ,即再根据 1 和的大小关系,求得此不等式的解集详解:当,不等

    25、式即,即,解得,或,故不等式的解集为,或由题意可得恒成立,当时,显然不满足条件,解得,故 a 的范围为若,不等式为,即,当时,不等式的解集为;当时,不等式即,它的解集为;当时,不等式的解集为点睛:本题主要考查一元二次不等式的解法,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于 0 ,不等于 0 ,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小 , 结合图像得到不等式的解集 .12、 ( 1 )解集为,或;( 2 ) a 的范围为;( 3 )见解析 .【详解】分析 : ( 1 )当 a=1 ,不等式即(

    26、x+2 )( x 1 ) 0 ,解此一元二次不等式求得它的解集 ; ( 2 )由题意可得( a+2 ) x2+4x+a 1 0 恒成立,当 a= 2 时,显然不满足条件,故有,由此求得 a 的范围 ; ( 3 )若 a 0 ,不等式为 ax2+x a 1 0 ,即再根据 1 和的大小关系,求得此不等式的解集详解:当,不等式即,即,解得,或,故不等式的解集为,或由题意可得恒成立,当时,显然不满足条件,解得,故 a 的范围为若,不等式为,即,当时,不等式的解集为;当时,不等式即,它的解集为;当时,不等式的解集为点睛:本题主要考查一元二次不等式的解法,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于 0 ,不等于 0 ,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小 , 结合图像得到不等式的解集 .

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省2021-2022学年高一上学期第一次月考数学试题含解析.doc
    链接地址:https://www.163wenku.com/p-1988071.html
    风予禄
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库