初中数学-九年级数学教案数学教案-正多边形和圆.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学-九年级数学教案数学教案-正多边形和圆.docx》由用户(风予禄)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 九年级 数学教案 正多边形 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、教学设计示例教学设计示例 1 1教学目标教学目标:(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;(3)进一步向学生渗透“特殊?一般”再“一般?特殊”的唯物辩证法思想教学重点教学重点:正多边形的概念与正多边形和圆的关系的第一个定理教学难点教学难点:对定理的理解以及定理的证明方法教学活动设计:(一)观察、分析、归纳:观察、分析:1等边三角形的边、角各有什么性质?2正方形的边、角各有什么性质?归纳:等边三角形与正方形的边、角性质的共同点教师组织学生进行,并可以提问学
2、生问题(二)正多边形的概念:(1)概念:各边相等、各角也相等的多边形叫做正多边形如果一个正多边形有 n(n3)条边,就叫正 n 边形等边三角形有三条边叫正三角形,正方形有四条边叫正四边形(2)概念理解:请同学们举例,自己在日常生活中见过的正多边形(正三角形、正方形、正六边形,.)矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?矩形不是正多边形,因为边不一定相等菱形不是正多边形,因为角不一定相等(三)分析、发现:问题:正多边形与圆有什么关系呢?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分要将圆五等分,把等分点顺次连结,可得
3、正五边形要将圆六等分呢?(四)多边形和圆的关系的定理定理:把圆分成 n(n3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正 n边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n边形我们以 n=5 的情况进行证明已知:O 中,=,TP、PQ、QR、RS、ST 分别是经过点 A、B、C、D、E 的O 的切线求证:(1)五边形 ABCDE 是O 的内接正五边形;(2)五边形 PQRST 是O 的外切正五边形证明:(略)引导学生分析、归纳证明思路:弧相等说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:依次连结圆的
4、 n(n3)等分点,所得的多边形是正多迫形;经过圆的 n(n3)等分点作圆的切线,相邻切线相交成的多边形是正多边形(2)要注意定理中的“依次”、“相邻”等条件(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形(五)初步应用P157 练习1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?2求证:正五边形的对角线相等3如图,已知点 A、B、C、D、E 是O 的 5 等分点,画出O 的内接和外切正五边形(六)小结:知识:(1)正多边形的概念(2)n 等分圆周(n3)可得圆的内接正 n 边形和圆的外切正 n 边形能力和方法:正多边形的证明方法和思路,正多
5、边形判断能力(七)作业(七)作业 教材教材 P172P172 习题习题 A A 组组 2 2、3 3教学设计示例教学设计示例 2 2教学目标教学目标:(1)理解正多边形与圆的关系定理;(2)理解正多边形的对称性和边数相同的正多边形相似的性质;(3)理解正多边形的中心、半径、边心距、中心角等概念;(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;教学重点教学重点:理解正多边形的中心、半径、边心距、中心角的概念和性质定理教学难点教学难点:对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解教学活动设计:(一)提出问题:问题:上节课我们问题:上节课我们学习学习了正多
6、边形的定义,并且知道只要了正多边形的定义,并且知道只要 n n 等等分分(n(n3)3)圆周就可以得到的圆的内接正圆周就可以得到的圆的内接正 n n 边形和圆的外切正边形和圆的外切正 n n 边形边形反过反过来,来,是否每一个正多边形都有一个外接圆和内切圆呢?是否每一个正多边形都有一个外接圆和内切圆呢?(二)实践与探究:组织学生自己完成以下活动实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?探究 1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?探究 2:(1)正方形有外接圆吗?若有外接圆的
7、圆心在哪?(正方形对角线的交点)(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(3)正方形有内切圆吗?圆心在哪?半径是谁?(三)拓展、推理、归纳:(1)拓展、推理:过正五边形 ABCDE 的顶点 A、B、C、作O 连结 OA、OB、OC、OD同理,点 E 在O 上所以正五边形 ABCDE 有一个外接圆O因为正五边形 ABCDE 的各边是O 中相等的弦,所以弦心距相等因此,以点 O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切可见正五边形 ABCDE还有一个以 O 为圆心的内切圆(2)归纳:正五边形的任意三个顶点都不在同一条直线上它的任意三个顶点确定一个圆,即确定了圆心和
8、半径其他两个顶点到圆心的距离都等于半径正五边形的各顶点共圆正五边形有外接圆圆心到各边的距离相等正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离照此法证明,正六边形、正七边形、正 n 边形都有一个外接圆和内切圆定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距正多边形各边所对的外接圆的圆心角都相等正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角正 n 边形的每个中心角都等于 (3)巩固练习:1、正方形 ABCD 的外接圆圆心 O 叫做正方形
展开阅读全文