书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型初中数学-九年级数学教案数学教案-切线的判定和性质.docx

  • 上传人(卖家):风予禄
  • 文档编号:1983088
  • 上传时间:2021-12-23
  • 格式:DOCX
  • 页数:12
  • 大小:11.17KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初中数学-九年级数学教案数学教案-切线的判定和性质.docx》由用户(风予禄)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中 数学 九年级 数学教案 切线 判定 性质 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、切线的判定和性质(一)教学目标教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2 2、通过判定定理和切线判定方法的、通过判定定理和切线判定方法的学习学习,培养学生观察、分,培养学生观察、分析、归纳问题的能力;析、归纳问题的能力;3 3、通过学生自己实践发现定理,培养学生、通过学生自己实践发现定理,培养学生学习学习的主动性和积极的主动性和积极性性教学重点教学重点:切线的判定定理和切线判定的方法;切线的判定定理和切线判定的方法;教学难点教学难点:切线判定定理中所阐述的由位置来判定切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条

    2、半径;学直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视生开始时掌握不好并极容易忽视教学过程教学过程设计设计(一)复习、发现问题1直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和O 是什么关系?、观察、提出问题、分析发现(教师引导)图(2)中直线 l 是O 的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线 l 到圆心 O 的距离 OA 等于圆 O 的半径,直线 l 是O 的切线这时我们来观察直线 l

    3、与O 的位置发现:(1)直线 l 经过半径 OC 的外端点 C;(2)直线 l 垂直于半径0C这样我们就得到了从位置上来判定直线是圆的切线的方法?切线的判定定理(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线2、对定理的理解:引导学生理解:经过半径外端;垂直于这条半径请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可图(1)中直线了 l 经过半径外端,但不与半径垂直;图(2)(3)中直线 l 与半径垂直,但不经过半径外端从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线(三)切线的判定方法教师组织学生归纳切线的判定方法有三种:

    4、直线与圆有唯一公共点;直线到圆心的距离等于该圆的半径;切线的判定定理(四)应用定理,强化训练例 1 已知:直线 AB 经过O 上的点 C,并且 OA=OB,CACB求证:直线 AB 是O 的切线分析:欲证 AB 是O 的切线由于 AB 过圆上点 C,若连结 OC,则 AB 过半径 OC的外端,只需证明 OCOB。证明:连结 0C0A0B,CACB,”0C 是等腰三角形 0AB 底边 AB 上的中线ABOC直线 AB 经过半径 0C 的外端 C,并且垂直于半径 0C,所以 AB 是O 的切线练习 1 判断下列命题是否正确(1)经过半径外端的直线是圆的切线(2)垂直于半径的直线是圆的切线(3)过直

    5、径的外端并且垂直于这条直径的直线是圆的切线(4)和圆有一个公共点的直线是圆的切线(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切采取学生抢答的形式进行,并要求说明理由,练习 P106,1、2目的:使学生初步会应用切线的判定定理,对定理加深理解)(五)小结1、知识:切线的判定定理着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可2、方法:判定一条直线是圆的切线的三种方法:(1)根据切线定义判定即与圆有唯一公共点的直线是圆的切线。(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线(3)根据切线的判定定理来判定其中(2)和(3)本质相同,只是表达形式

    6、不同解题时,灵活选用其中之一3、能力:初步会应用切线的判定定理(六)作业 P115 中 2、4、5;P117 中 B 组 1切线的判定和性质(二)教学目标教学目标:1、使学生理解切线的性质定理及推论;2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;教学重点教学重点:切线的性质定理和推论切线的性质定理和推论 1 1、推论、推论 2 2教学难点教学难点:利用利用“反证法反证法”来证明切线的性质定来证明切线的性质定理理教学设计:(一)基本性质1、观察:(组织学生,使学生从感性认识到理性认识)2、归纳:(引导学生完成)(1)切线和圆有唯一公共点;(切线的定义)(2

    7、)切线和圆心的距离等于圆的半径;猜想:圆的切线垂直于经过切点的半径引导学生应用“反证法”证明分三步:(1)假设切线 AT 不垂直于过切点的半径 OA,(2)同时作一条 AT 的垂线 OM通过证明得到矛盾,OMOA 这条半径则有直线和圆的位置关系中的数量关系,得 AT 和O 相交与题设相矛盾(3)承认所要的结论 ATAO切线的性质定理:圆的切线垂直于经过切点的半径指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直引导学生发现:推论 1:经过圆心且垂直于切线的直线必经过切点推论 2:经过切点且垂于切线的直线必经过圆心引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:如果一

    8、条直线具备下列三个条件中的任意两个,就可推出第三个(1)垂直于切线;(2)过切点;(3)过圆心(二)归纳切线的性质(1)切线和圆有唯一公共点;(切线的定义)(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)(3)切线垂直于过切点的半径;(切线的性质定理)(4)经过圆心垂直于切线的直线必过切点;(推论 1)(5)经过切点垂直于切线的直线必过圆心(推论 2)(三)应用举例,强化训练例 1、如图,AB 为O 的直径,C 为O 上一点,AD 和过 C 点的切线互相垂直,垂足为 D求证:AC 平分DAB引导学生分析:条件 CD 是O 的切线,可得什么结论;由 ADCD,又可得什么证明:连结

    9、OCAC 平分DAB例 2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。已知:AB、CD 是O 的两条切线,E、F 为切点,且 ABCD求证:连结 E、F 的线段是直径。证明:连结 EO 并延长AB 切O 于 E,OEAB,ABCD,OECDCD 是O 切线,F 为切点,OE 必过切点 FEF 为O 直径强化训练:P109,13、求证:经过直径两端点的切线互相平行。已知:AB 为O 直径,MN、CD 为O 切线,切点为 A、B求证:MNCD证明:MN 切O 于 A,AB 为O 直径MNABCD 切O 于 B,B 为半径外端CDAB,MNCD(四)小结1、知识:切线的性质:(1)

    10、切线和圆有唯一公共点;(切线的定义)(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)(3)切线垂直于过切点的半径;(切线的性质定理)(4)经过圆心垂直于切线的直线必过切点;(推论 1)(5)经过切点垂直于切线的直线必过圆心(推论 2)2、能力和方法:凡是题目中给出切线的切点,往往“连结”过切点的半径从而运用切线的性质定理,产生垂直的位置关系(五)作业教材 P109 练习 2;教材 P116 中 7切线的判定和性质(三)教学目标教学目标:1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;3、通过对切线的综合

    11、型例题分析和论证,激发学生的思维教学重点教学重点:对切线的判定方法及其性质的准确、熟对切线的判定方法及其性质的准确、熟炼、灵活地运用炼、灵活地运用教学难点教学难点:综合型例题分析和论证的思维过程综合型例题分析和论证的思维过程教学设计:(一)复习与归纳1、切线的判定切线的判定方法有三种:直线与圆有唯一公共点;直线到圆心的距离等于该圆的半径;切线的判定定理即经过半径外端并且垂直于这条半径的直线是圆的切线2、切线的性质:(1)切线和圆有唯一公共点;(切线的定义)(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)(3)切线垂直于过切点的半径;(切线的性质定理)(4)经过圆心垂直于切线的直线

    12、必过切点;(推论 1)(5)经过切点垂直于切线的直线必过圆心(推论 2)(二)灵活应用例 1(P108 例 3)、已知 AB 是O 的直径,BC 是O 的切线,切点为 B,OC 平行于弦 AD求证:DC 是O 的切线证明:连结 ODOA=OD,1=2,ADOC,1=3、2=43=4在OBC 和ODC 中,OB=OD,3=4,OC=OC,OBCODC,OBC=ODCBC 是O 的切线,OBC=90,ODC=90DC 是O 的切线例 2(P110 例 4)、如图,在以 O 为圆心的两个同心圆中,大圆的弦 AB 和 CD相等,且 AB 与小圆相切于点 E,求证:CD 与小圆相切证明:连结 OE,过

    13、O 作 OFCD,垂足为 FAB 与小圆 O 切于点点 E,OEAB又AB=CD,OF=OE,又 OFCD,CD 与小圆 O 相切学生归纳:(1)证明切线的两个常见方法(连半径证垂直;作垂直证半径);(2)“连结”过切点的半径,产生垂直的位置关系例 3、已知:AB 是半O 直径,CDAB 于 D,EC 是切线,E 为切点求证:CE=CF证明:连结 OEBE=BO3=BCE 切O 于 EOECE2+3=90CDAB4+B=902=41=41=2CE=CF以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决巩固练习:P111 练习 1、2(三)小结:1

    14、、知识:(指导学生归纳)切线的判定方法和切线的性质2、能力:灵活运用切线的判定方法和切线的性质证明问题;作辅助线的能力和技巧(四)作业:教材 P115,1(1)、2、3探究活动探究活动问题:(北京西城区,2002)已知:AB 为O 的直径,P 为 AB 延长线上的一个动点,过点 P 作O 的切线,设切点为 C(1)当点 P 在 AB 延长线上的位置如图 1 所示时,连结 AC,作APC 的平分线,交 AC 于点 D,请你测量出CDP 的度数;(2)当点 P 在 AB 延长线上的位置如图 2 和图 3 所示时,连结 AC,请你分别在这两个图中用尺规作APC 的平分线(不写做法,保留作固痕迹),设

    15、此角平分线交 AC于点 D,然后在这两个图中分别测量出CDP 的度数;猜想:CDP 的度数是否随点 P 在 AB 延长线上的位置的变化而变化?请对称的猜想加以证明解:(1) 测量结果:(2)图 2 中的测量结果:图 3 中的测量结果:猜想:证明:解:(1) 测量结果:CDP=45(2)图 2 中的测量结果:CDP=45图 3 中的测量结果:CDP=45猜想:CDP=45,不随点 P 在 AB 延长线上的位置的变化而变化证明:连结 OCPC 切O 于点 C,PCOC,1+CPO=90,PC 平分APC,2=1/2CPOOA=OCA=31=A+3,A=1/21CDP=A+2=1/2(1+CPO)=45猜想正确

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初中数学-九年级数学教案数学教案-切线的判定和性质.docx
    链接地址:https://www.163wenku.com/p-1983088.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库