初中数学-九年级数学教案数学教案-圆和圆的位置关系.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学-九年级数学教案数学教案-圆和圆的位置关系.docx》由用户(风予禄)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 九年级 数学教案 位置 关系 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、1、教材分析(1)知识结构(2)重点、难点分析重点:两圆的位置关系和两圆相交、相切的性质它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用由于两圆位置关系有 5 种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线”看成是真命题2、教法建议本节内容需要两个课时第一课时主要研究圆和圆的位置关系;第二课时相交两圆的性质(1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识;(2 2
2、)要重视圆的对称美的教学,组织学生欣赏,在激发学生的)要重视圆的对称美的教学,组织学生欣赏,在激发学生的学习学习兴趣中,获得知识,提高能力;兴趣中,获得知识,提高能力;(3 3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教教学过程学过程第一课时第一课时 圆和圆的位置关系圆和圆的位置关系教学目标教学目标:1掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;2通过两圆的位置关系,培养学生的分类能力和数形结合能力;3通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力教学重点教学重点:两圆的五种位置
3、与两圆的半径、圆心距的数量之间的关系教学难点教学难点:两圆位置关系及判定(一)复习、引出问题1复习:直线和圆有几种位置关系?各是怎样定义的?(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交各种位置关系是通过直线与圆的公共点的个数来定义的2引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?(二)观察、分类,得出概念1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离(图(1)(2)外切:两个圆有唯一
4、的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切这个唯一的公共点叫做切点(图(2)(3)相交:两个圆有两个公共点,此时叫做这两个圆相交(图(3)(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切这个唯一的公共点叫做切点(图(4)(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)两圆同心是两圆内含的一个特例 (图(6)2、归纳:(1)两圆外离与内含时,两圆都无公共点(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一(3)两圆位置关系的五种情
5、况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切)教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交除以上关系外,还有其它关系吗?可能不可能有三个公共点?结论:在同一平面内任意两圆只存在以上五种位置关系(三)分析、研究1、相切两圆的性质让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明2、两圆位置关系的数量特征设两圆半径分别为 R 和 r圆心距为 d,组织学生研究两圆的五种位置关系,r和 d
6、 之间有何数量关系(图形略)两圆外切 dR+r;两圆内切 dR-r (Rr);两圆外离 dR+r;两圆内含 dR-r(Rr);两圆相交 R-rdR+r说明:注重“数形结合”思想的教学(四)应用、练习例 1:如图,O 的半径为 5 厘米,点 P 是O 外一点,OP=8 厘米求:(1)以 P 为圆心作P 与O 外切,小圆P 的半径是多少?(2)以 P 为圆心作P 与O 内切,大圆P 的半径是多少?解:(1)设P 与O 外切与点 A,则PA=PO-OAPA=3cm(2)设P 与O 内切与点 B,则PB=PO+OBPB=1 3cm例 2:已知:如图,ABC 中,C90,AC12,BC8,以 AC为直径
展开阅读全文