初中数学-八年级数学教案数学教案-平行四边形的判定(第二课时).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学-八年级数学教案数学教案-平行四边形的判定(第二课时).docx》由用户(风予禄)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 年级 数学教案 平行四边形 判定 第二 课时 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、七、教学步骤【引入新课】由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理 4(写出课题)【讲解新课】(1)平行四边形的判定定理 4:一组对边平行且相等的四边形是平行四边形引导学生结合图 1,把已知,求证具体化分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现证明:(由学生口述)师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出(2)平行四边形判定等知识的综合应用教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的因此,对典型例题的分析、
2、论证、方法技巧的探讨运用都必须引起重视例 2 已知:, 分别是 、 的中点,结合图 1,求证: 分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形 为平行四边形(显然后者较前者简单)证明:(略)此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路例 3 画 ,使 ,(按课本讲)【总结、扩展】1小结平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度
3、,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题2思考题:已知:如图 1,在 中, , 求证:八、布置作业教材 P143 中 11、12,P144 中 13、14九、板书设计十、背景知识与课外阅读美妙的莫雷定理已知:如图 1, 和 , 和 , 和 分别为 的 、 、 的三等分线求证: 是正三角形这是英国数学家富兰克莫雷在 1899 年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一十一、随堂练习教材 P140 中 1、2补充:判断(1)一组对边平行,一组对边相等的四边形是平行四边形()(2)一组对角平行,一组对角相等的四边形是平行四边形()(3)一组对边相等,一组对角相等的四边形是平行四边形()(4)一组对边平行且相等的四边形是平行四边形()
展开阅读全文