第25章 随机事件的概率-25.2 随机事件的概率-教案、教学设计-部级公开课-华东师大版九年级上册数学(配套课件编号:201cf).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第25章 随机事件的概率-25.2 随机事件的概率-教案、教学设计-部级公开课-华东师大版九年级上册数学(配套课件编号:201cf).docx》由用户(老黑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第25章 随机事件的概率_25.2 随机事件的概率_教案、教学设计_部级公开课_华东师大版九年级上册数学配套课件编号:201cf 华东师大 九年级 上册 数学 25 随机 事件 概率 _25 教案 下载 _九年级上册_华师大版(2024)_数学_初中
- 资源描述:
-
1、华东师范大学出版社九年义务教育数学课本 九年级上册25.2.125.2.1 概率及其意义第一课时概率及其意义第一课时 教学设计教学设计一、一、教学教学内容分析内容分析1.1. 课标内容课标内容课标内容:了解事件的概率;知道通过大量的重复试验,可以用频率估计概率。2.2. 教材内容分析教材内容分析传统的概率教学常常重在概率的计算,修订后的教材试图通过从定性到定量,从试验观察到理论分析,逐步达到提高学生对概率理解水平的目的。所以结合教材和课标内容, 设定本节的教学重点是: 在具体情景中理解概率及它的意义。知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率,和分析的方法;理解运用分析方法
2、获得概率的公式。3.3. 教材地位分析教材地位分析本节是对上一节不确定事件发生可能性大小的探索, 是后面研究简单及复杂问题情景下事件发生概率的基础。二、二、教学目标分析教学目标分析1.1. 教学目标设置教学目标设置根据教材和课标内容,我认为本节课应完成的教学目标有:1. 理解概率的含义,让学生知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率和分析的方法。2. 发现、归纳并理解用分析方法预测概率的公式。3. 在具体情景中理解概率的意义。4. 通过动手实验与合作交流,进一步提高学生收集、整理、描述数据的技能,培养学生分析数据的素养。2.2. 教学目标分析教学目标分析本节课在知识与方法
3、上侧重的是学生的理解, 在技能上培养的是学生分析数据的素养。三、三、学生学情分析学生学情分析1.1. 知识基础分析知识基础分析根据课程标准,学生在小学阶段已经通过实例感受简单的随机现象,并能对一些简单的随机现象发生的可能性大小作出定性的描述。 所以学生对于事件发生概率的含义是可以理解的。学生在上一节25.1 在重复试验中观察不确定现象已通过试验观察体会到,随机事件在每一次试验中是否发生是不可预言的,但在大量重复试验后,随机事件发生的频率会逐渐稳定在某一数值附件。2.2. 技能分析技能分析学生在八年级已学习了数据的收集与表示、数据的整理与初步处理,已有关于频率、平均数的知识基础,和收集、描述、分
4、析数据的技能。学生对新知识有好奇心及强烈的求知欲, 但由具体试验现象上升到理论分析还有一定的难度,所以我认为本节课的教学难点是:在具体问题情境中,如何引导学生运用分析的方法获得概率;和在具体问题情境中,对概率意义的理解。四、四、教学策略分析教学策略分析为了突破这一教学难点,我做了以下两点思考:1. 用什么试验让学生分析?课本上给了四个试验, 其中 “正四面体骰子” 对学生而言是很抽象的, 从 “52张扑克牌中随机抽一张抽到黑桃”所有机会均等的结果是可以从两个角度考虑的,如 13 种,或黑桃、红桃、梅花、方块四种。也就说这两个试验对处于探索用分析方法预测概率的学生而言是很抽象的, 所以我决定就用
5、学生所熟悉的抛硬币(课本试验 1)和抛骰子(课本试验 3)来分析,浅入深出,但这两个试验又不足以说明用分析的方法是可以预测概率的,所以我决定再加入一个“抛骰子掷得偶数”的概率,课本没有试验数据证明它,就鼓励学生自己动手做试验,而且这个试验数据还可以为后面研究概率的意义服务。 三个试验放在一起又可以让学生发现并归纳出用分析方法预测概率的公式。 可以说这样安排即攻破了本节课的教学难点,又完成了本节课的教学目标。2. 如何引导学生分析?如何引导学生分析就是如何引导学生思考,我采用的方法是:通过问题层层启发,和学生小组合作探究的教学策略。五、五、教学过教学过程程设计设计:根据教学分析,我制定了 7 个
6、教学环节:1回顾复习,情景引入2师生合作,探究新知3师生合作,试验分析4试验总结,概率公式“练一练”5实验探究,概率意义“习题巩固”6师生合作,课堂小结7布置作业(一)(一)回顾复习,情境引入回顾复习,情境引入请指出下列事件是什么事件(1)水往低处流;(2)某人的体温是 100;(3)明天降雨;如果天气预报说:“明天降雨的可能性是 80%”,你出门会带雨具吗?(4)买到合格的足球;同一型号足球,甲厂合格率为 99.9%,乙厂合格率为 98.9%,若两产在价格等其它方面都相同,你愿意买哪个厂的产品?知道了随机事件发生可能性的大小,对我们的生活有很大的指导作用!思考:怎么预测随机事件发生的可能性呢
7、?设计意图设计意图:通过具体生活实例通过具体生活实例,让学生发现让学生发现: :知道了随机事件发生可能性的知道了随机事件发生可能性的大小,对我们的生活有很大的指导作用,大小,对我们的生活有很大的指导作用,从而从而激发学生的学习兴趣和求知欲激发学生的学习兴趣和求知欲。(二)(二)师生合作,探究新知师生合作,探究新知1. 概率:一个事件发生的可能性就叫做该事件的概率, 用 P(事件)表示比如,抛掷一枚硬币,“出现正面”的概率为21,记为 P(出现正面)=21说明:(1)概率用数值反映了随机事件发生可能性的大小(2)必然事件发生的概率为 1,记作 P(必然事件)=1;(3)不可能事件发生的概率为 0
8、,记作 P(不可能事件)=0;思考:如果 A 为随机事件,你能确定 P(A)的取值范围吗?2. 概率与频率的关系研究者抛掷硬币次数(n) 出现正面次数(m) 出现正面频率(m/n)德摩根204810610.5181蒲丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005正面朝上的频率稳定在 0.5 附近,P(正面向上)=21大量重复试验,随机事件发生的频率会呈现出稳定的趋势,因此人们常用观察到的频率来估计概率。所以求一个事件概率的基本方法是大量的重复试验。3.频率来估计概率缺点:需要大量重复试验,无法预测。思考
9、:在简单的问题情境下,我们能不能不实验,运用分析的方法预测概率?设计意图设计意图:指出概率与频率的关系指出概率与频率的关系,获得概率的方法之一是大量重复实验获得概率的方法之一是大量重复实验,指出其缺点,激发学生想运用分析的方法预测概率的探知欲。指出其缺点,激发学生想运用分析的方法预测概率的探知欲。(三)(三)师生合作,试验分析师生合作,试验分析试验 1:掷一枚质地均匀的硬币,落地后:(1)会出现几种结果?(2 2)每种结果出现的机会相等吗?试验 2:掷一枚质地均匀的正方体骰子,落地后:(1)会出现几种结果?(2)每种结果出现的机会相等吗?让学生发现试验 1 和 2 的共同特点,并带这两个问题分
10、别分析“正面向上”,和“掷得点数 6”的概率有多大呢?强调强调:(1 1)质地均匀质地均匀;(2 2)是所有的结果是所有的结果;(3 3)机会均等是每个结果出现的机会均等是每个结果出现的可能性相等。可能性相等。小组合作探究,小组讨论结果汇报。并在此基础上进行总结,加深学生对分析方法预测概率思想的理解。试验 3:试分析:抛掷一个质地均匀的正方体骰子,掷得点数是偶数的概率是多少?试 验关注的结果所有机会均等的结果关注的结果发生的概率频率的稳定值掷一枚正方体骰子掷得偶数思考:我们的猜想正确吗?我们的分析的方法真的可行吗?设计意图设计意图:试验试验 1 1、2 2 通过问题层层引导学生分析通过问题层层
展开阅读全文
链接地址:https://www.163wenku.com/p-1947869.html