6 多边形的面积-梯形的面积-ppt课件-(含教案+视频+素材)-部级公开课-人教版五年级上册数学(编号:80307).zip
我为父亲抽一份奖品请观察这些奖品,它们是什么形状呢?复习长方形的面积=长宽三角形的面积=底高2平行四边形的面积=底高平行四边形的底 长方形的长 等于等于平行四边形的面积 长方形的面积等于平行四边形的高 长方形的宽长方形的面积=长宽平行四边形的面积=底高平行四边形的底 三角形的底等于等于平行四边形的高 三角形的高每个三角形的面积等于拼成的平行四边形的面积的 一半平行四边形的面积=底高三角形的面积=底高 2这是一个梯形,它有一对平行的边。上面的边称为上底。下面的边称为下底。上底和下底之间的垂直距离称为高。上底下底高把梯形转化成学过的图形上底下底上底下底上底下底高把梯形转化后的图形,推导出梯形的面积平行四边形的底等于梯形的 与 的和平行四边形的高 梯形的高每个梯形的面积等于拼成的平行四边形面积的下底上底等于一半= 2梯形的面积=平行四边形的面积 2底高 上底+下底=( )高2 上底下底下底上底计算下列梯形的面积。25 cm1.42 cm35 cm上底 = cm,下底 = cm,高 = cm。面积( + ) 2 = (cm2)上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)2.10 cm14 cm8 cm253542253542126081410110(8 + 14) 10 2上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)上底 = cm,下底 = cm,高 = cm。625面积= = (cm2)456(6 + 2) 5 2(4 + 5) 6 220271 cm1 cm计算在方格纸上的梯形面积有一条堤坝,其横截面是梯形,坝顶长度是有一条堤坝,其横截面是梯形,坝顶长度是2020米米,坝底长度是,坝底长度是8080米,坝高是米,坝高是4040米。堤坝横截面的米。堤坝横截面的面积是多少平方米?面积是多少平方米?20 m20 m80 m80 m40 m40 mS S梯梯= ( a + b ) h 2= ( a + b ) h 2( 20 +80 )40 2( 20 +80 )40 2=100 40 2=100 40 2=4000 2=4000 2=2000(=2000(平方米)平方米)答:堤坝横截面的面积是答:堤坝横截面的面积是20002000平方米。平方米。三角形(1)的高 三角形(2)的高 梯形 的高三角形(1)的底是 三角形(2)的底是梯形的面积 三角形(1)的面积与三角形(2)的面积的等于 等于 梯形的上底梯形的下底和等于上底下底高(1 1)(2) 梯形的面积=三角形(1)的面积 + 三角形(2)的面积上底下底高三角形(1)的底高2 三角形(2)的底高2= + 上底下底 = 高2 + 高2 =(上底+下底)高 2(1 1)(2)把梯形转化成学过的图形梯形的面积=平行四边形的面积= 底 高(上底+下底)高2= 梯形的面积= (上底+下底)高2s=(a+b)h2三角形的面积=底高2=532=7.5(cm2 )=(0+5)32=7.5(cm2)试用梯形的面积计算公式求这些图形的面积:试用梯形的面积计算公式求这些图形的面积:试用梯形的面积计算公式求这些图形的面积:教学反思梯形的面积是人教版五年级上册,第六单元多边形的面积 ,这节课的内容是在学习了平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式。根据新课程新理念的要求,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。(一)体现了探究性教学的特点 本节课充分让学生动手实践用学具剪剪拼拼,进行了自主探索,让学生利用前面的学习经验,小组合作动手把梯形转化成已经学过的图形,通过找图形之间的联系,从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我利用白板的摄像功能把学生转化梯形和推导梯形面积计算公式的过程投影到大屏幕,学生主在充分感知、理解的基础上总结出梯形面积的计算方法。之后我又用微课展示其它的两种梯形转化方法:1、添加梯形的对角线把梯形转化成两个三角形;2、把梯形的上底和下底重合对折,沿着对角线剪开,把它们拼成一个平行四边形;与其他们公式推导的过程。这样的教学正好落实了“数学教学要在学生已有的知识背景下学习”的理念。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。 (二)体现数学与生活的联系课的伊始我主要用电子白板的隐藏功能和拖拽功能,设计了父亲节要到了学生为父亲抽奖,通过观察奖品的形状,来进而复习了前面学过的长方形、平形四边形和三角形的面积计算公式。另外,在导课时,创设了请学生帮老师计算近似梯形的草地的面积是多少的问题情境,不仅有效提出了数学问题,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上我依据学生的心理特点,做到了情景的创设“要联系学生的生活实际”的要求。在这一前提下让学生进行探究,显示了学习的自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。 (三)体现练习的层次性 练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。(4)注重知识的拓展与延伸学完本课的知识,我继续运用了白板的隐藏功能,让学生把梯形的面积与三角形、长方形、正方形、平行四边形的面积结合起来,试着用梯形的面积计算公式来求出这些图形的面积,体会梯形面积计算公式的奇妙之处。使课堂教学达到了升华,同时培养学生善于积累知识、勤于思考问题的能力。梯形的面积练习计算下列梯形的面积。25 cm1.42 cm35 cm上底 = cm,下底 = cm,高 = cm。面积( + ) 2 = (cm2)上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)2.10 cm14 cm8 cm253542253542126081410110(8 + 14) 10 2上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)上底 = cm,下底 = cm,高 = cm。625面积= = (cm2)456(6 + 2) 5 2(4 + 5) 6 220271 cm1 cm计算在方格纸上的梯形面积有一条堤坝,其横截面是梯形,坝顶长度是有一条堤坝,其横截面是梯形,坝顶长度是2020米米,坝底长度是,坝底长度是8080米,坝高是米,坝高是4040米。堤坝横截面的米。堤坝横截面的面积是多少平方米?面积是多少平方米?20 m20 m80 m80 m40 m40 mS S梯梯= ( a + b ) h 2= ( a + b ) h 2( 20 +80 )40 2( 20 +80 )40 2=100 40 2=100 40 2=4000 2=4000 2=2000(=2000(平方米)平方米)答:堤坝横截面的面积是答:堤坝横截面的面积是20002000平方米。平方米。1梯形的面积梯形的面积教学设计教学设计 解析教材内涵解析教材内涵: : 这部分内容的教学是在学习了平行四边形和三角形面积的基础上进行的。教材先通过小轿车车窗玻璃是梯形的这样一个;生活实例引入梯形面积计算。然后通过学生动手实验探索面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求以有提高,不再给出具体的方法,而是要求用学过的方法,也可以且拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。(1)两个一们的梯形拼成一个平行四边形;(2)把一个梯形剪成两个三角形;(3)把一个梯形剪成一个平行四边形和一个三角形。还可以从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。策略与方法: (1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。 (2)体现动手操作,合作学习的学习方式,让学生经历自主探索的过程; (3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。 教学目标:教学目标: 1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。 2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。 3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。 教学准备:教学准备:梯形学具、电脑课件。 教学重点:教学重点: 重点:理解并运用梯形的面积计算公式。 难点:梯形面积公式的推导过程。 教学过程:教学过程:21、复习首先创设一个情境:华润超市举行抽奖活动,请个别同学为父亲抽一份奖品。由奖品的形状来回顾三角形、平行四边形和长方形的面积计算公式及它们的推导过程。1、同学们,你们还记得这些图形的面积计算公式吗?生:长方形的面积计算公式是。 。 。 。 ,平行四边形的面积计算公式是。 。 。 ,三角形的面积计算公式是。 。 。.师:看来同学们对之前学过的知识掌握得挺牢固的。2、师:还记得我们是怎样推导平行四边形的面积计算公式吗?生:师:说得真好,通过剪、拼把平行四边形转化成一个长方形推导出来的(师边讲边演示) 。师:那么三角形的面积计算公式又是怎样推导出来的?哪位同学愿意来演示?生:(一边用平板演示,一边解说过程)3、小结师: 对,我们运用转化的方法,把图形剪、拼成以前学过的图形来推导出它们的计算公式。4、引出课题3出示一块似梯形的草地,请学生猜猜是什么图形,从而过度到梯形面积的学习。(点击课件出示课题) 。生齐读课题。2、新知探究1、师:你能说出梯形各部分的名称吗?生说师点击出现2、猜想师:孩子们,如果要把梯形转化成我们学过的图形,你想把它转化成什么图形?生:三角形、平行四边形、长方形。 。 。 。 。师:同学们很善于思考,老师喜欢开动脑筋的孩子。3、验证师:请拿出老师给大家准备的梯形,与小组讨论,然后动手试一试。 生动手实践,师巡视。 (要求:生剪或画,要用尺子)4、汇报,展示师:同学们把梯形转化成了什么图形呢?哪位同学愿意展示他们的作品。生:(上台展示) ,说:我们用两个完全一们的梯形拼成了一个长方形。我们用两个完全一样的梯形的拼成了一个正方形。我们。 。 。 。 。 。 。 。 。 。 。 。 。 。 。平行四边形。 4我们把一个梯形剪成两个三角形。 (生汇报时,不用走到中间,边拼边讲了)师:真能干,你成功地把梯形转化成我们学过的图形!你们为什么想到把它们拼成一个长方形呢?生:长方形的面积我们会计算,除以 2 就可以得到了这个梯形的面积了。三角形的面积我们已经知道了,所以把这两个三角形的面积加起来就可算出了梯形的面积了。师:掌声送给他!师:还有哪些同学也把梯形转化成了长方形。 。 。 。请举手。(把学生的作品贴在黑板上)。 。 。 。5、小结师:同学们真了不起,能想出这么多种方法来求出梯形的面积。师:刚才同学用梯形转化成了长方形、正方形,还有的转化成了平行四边形和三角形。(师手指黑板上的图形)6、推导师:同学们小组讨论,认为用哪图形来推导出梯形的面积计算公式最方便。生讨论决定用两个完全一定的梯形来拼成的平行四边形推导出梯形的面积计算公式最方便。5师:我们一起来看,刚才我们用两个完全一样的梯形拼成了一个平行四边形,那么这个拼成的平行四边形的面积与一个梯形的面积有什么关系?(课件)生:1 个平行四边形的面积=2 个梯形的面积,1 个梯形的面积=一个平行四边形面积的一半。师:真是个会学习的孩子!你能用一个式子来表示它们的关系吗?生:师:为什么要除以 2生:师:说得真好!师:平行四边形的面积计算公式我们已经知道了,你们能不能通过平行四边形的计算公式,试着推导出梯形的面积计算公式呢?7、小组合作师:请四人一小组,先讨论,然后完成任务单。8、汇报(用手机拍照展示)个别组的学生上台汇报师:大家对他们的汇报有什么疑问吗?生问生答师:都听明白了吗?把掌声送给这个小组。6师:通过大家的努力,我们推导出了梯形的面积计算公式是?师:通常面积我们用字母 s 表示,高我们用字母 h 表示,那么梯形的上底用 a 表示,b 表示梯形的下底,我们如何用字母来表示梯形的面积呢?生:3、练习巩固师:请同学用我们学到的梯形面积计算公式来解决问题。生做练习。 (应用题那道有手机拍照检查)4、拓展1、师:刚才有的同学把梯形剪成两个三角形,我们一起来看它的推导过程(课件视频-微课 2 个)生看视频-微课。师:是呀,我们运用了转化的方法推导出了梯形的面积计算公式是?用字母表示是?生;2、体会梯形面积公式的奇妙之处:用梯形的面积计算公式求出长方形、正方形、平行四边形和三角形的面积。5、课堂小结1、回顾本节课所学的内容,你最大的收获是什么?生:生:72、师小结: 同学们,这节课我们学习了 (生:梯形的面积) ,在学习的过程中运用了一个的非常重要的数学思想那就是, (生:转化思想) ,同学学得很好,这节课我们上到这,下课!
收藏
编号:1944323
类型:共享资源
大小:4.64MB
格式:ZIP
上传时间:2021-12-08
5
文币
- 资源描述:
-
我为父亲抽一份奖品请观察这些奖品,它们是什么形状呢?复习长方形的面积=长宽三角形的面积=底高2平行四边形的面积=底高平行四边形的底 长方形的长 等于等于平行四边形的面积 长方形的面积等于平行四边形的高 长方形的宽长方形的面积=长宽平行四边形的面积=底高平行四边形的底 三角形的底等于等于平行四边形的高 三角形的高每个三角形的面积等于拼成的平行四边形的面积的 一半平行四边形的面积=底高三角形的面积=底高 2这是一个梯形,它有一对平行的边。上面的边称为上底。下面的边称为下底。上底和下底之间的垂直距离称为高。上底下底高把梯形转化成学过的图形上底下底上底下底上底下底高把梯形转化后的图形,推导出梯形的面积平行四边形的底等于梯形的 与 的和平行四边形的高 梯形的高每个梯形的面积等于拼成的平行四边形面积的下底上底等于一半= 2梯形的面积=平行四边形的面积 2底高 上底+下底=( )高2 上底下底下底上底计算下列梯形的面积。25 cm1.42 cm35 cm上底 = cm,下底 = cm,高 = cm。面积( + ) 2 = (cm2)上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)2.10 cm14 cm8 cm253542253542126081410110(8 + 14) 10 2上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)上底 = cm,下底 = cm,高 = cm。625面积= = (cm2)456(6 + 2) 5 2(4 + 5) 6 220271 cm1 cm计算在方格纸上的梯形面积有一条堤坝,其横截面是梯形,坝顶长度是有一条堤坝,其横截面是梯形,坝顶长度是2020米米,坝底长度是,坝底长度是8080米,坝高是米,坝高是4040米。堤坝横截面的米。堤坝横截面的面积是多少平方米?面积是多少平方米?20 m20 m80 m80 m40 m40 mS S梯梯= ( a + b ) h 2= ( a + b ) h 2( 20 +80 )40 2( 20 +80 )40 2=100 40 2=100 40 2=4000 2=4000 2=2000(=2000(平方米)平方米)答:堤坝横截面的面积是答:堤坝横截面的面积是20002000平方米。平方米。三角形(1)的高 三角形(2)的高 梯形 的高三角形(1)的底是 三角形(2)的底是梯形的面积 三角形(1)的面积与三角形(2)的面积的等于 等于 梯形的上底梯形的下底和等于上底下底高(1 1)(2) 梯形的面积=三角形(1)的面积 + 三角形(2)的面积上底下底高三角形(1)的底高2 三角形(2)的底高2= + 上底下底 = 高2 + 高2 =(上底+下底)高 2(1 1)(2)把梯形转化成学过的图形梯形的面积=平行四边形的面积= 底 高(上底+下底)高2= 梯形的面积= (上底+下底)高2s=(a+b)h2三角形的面积=底高2=532=7.5(cm2 )=(0+5)32=7.5(cm2)试用梯形的面积计算公式求这些图形的面积:试用梯形的面积计算公式求这些图形的面积:试用梯形的面积计算公式求这些图形的面积:教学反思梯形的面积是人教版五年级上册,第六单元多边形的面积 ,这节课的内容是在学习了平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式。根据新课程新理念的要求,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。(一)体现了探究性教学的特点 本节课充分让学生动手实践用学具剪剪拼拼,进行了自主探索,让学生利用前面的学习经验,小组合作动手把梯形转化成已经学过的图形,通过找图形之间的联系,从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我利用白板的摄像功能把学生转化梯形和推导梯形面积计算公式的过程投影到大屏幕,学生主在充分感知、理解的基础上总结出梯形面积的计算方法。之后我又用微课展示其它的两种梯形转化方法:1、添加梯形的对角线把梯形转化成两个三角形;2、把梯形的上底和下底重合对折,沿着对角线剪开,把它们拼成一个平行四边形;与其他们公式推导的过程。这样的教学正好落实了“数学教学要在学生已有的知识背景下学习”的理念。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。 (二)体现数学与生活的联系课的伊始我主要用电子白板的隐藏功能和拖拽功能,设计了父亲节要到了学生为父亲抽奖,通过观察奖品的形状,来进而复习了前面学过的长方形、平形四边形和三角形的面积计算公式。另外,在导课时,创设了请学生帮老师计算近似梯形的草地的面积是多少的问题情境,不仅有效提出了数学问题,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上我依据学生的心理特点,做到了情景的创设“要联系学生的生活实际”的要求。在这一前提下让学生进行探究,显示了学习的自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。 (三)体现练习的层次性 练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。(4)注重知识的拓展与延伸学完本课的知识,我继续运用了白板的隐藏功能,让学生把梯形的面积与三角形、长方形、正方形、平行四边形的面积结合起来,试着用梯形的面积计算公式来求出这些图形的面积,体会梯形面积计算公式的奇妙之处。使课堂教学达到了升华,同时培养学生善于积累知识、勤于思考问题的能力。梯形的面积练习计算下列梯形的面积。25 cm1.42 cm35 cm上底 = cm,下底 = cm,高 = cm。面积( + ) 2 = (cm2)上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)2.10 cm14 cm8 cm253542253542126081410110(8 + 14) 10 2上底 = cm,下底 = cm,高 = cm。面积 = = (cm2)上底 = cm,下底 = cm,高 = cm。625面积= = (cm2)456(6 + 2) 5 2(4 + 5) 6 220271 cm1 cm计算在方格纸上的梯形面积有一条堤坝,其横截面是梯形,坝顶长度是有一条堤坝,其横截面是梯形,坝顶长度是2020米米,坝底长度是,坝底长度是8080米,坝高是米,坝高是4040米。堤坝横截面的米。堤坝横截面的面积是多少平方米?面积是多少平方米?20 m20 m80 m80 m40 m40 mS S梯梯= ( a + b ) h 2= ( a + b ) h 2( 20 +80 )40 2( 20 +80 )40 2=100 40 2=100 40 2=4000 2=4000 2=2000(=2000(平方米)平方米)答:堤坝横截面的面积是答:堤坝横截面的面积是20002000平方米。平方米。1梯形的面积梯形的面积教学设计教学设计 解析教材内涵解析教材内涵: : 这部分内容的教学是在学习了平行四边形和三角形面积的基础上进行的。教材先通过小轿车车窗玻璃是梯形的这样一个;生活实例引入梯形面积计算。然后通过学生动手实验探索面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求以有提高,不再给出具体的方法,而是要求用学过的方法,也可以且拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。(1)两个一们的梯形拼成一个平行四边形;(2)把一个梯形剪成两个三角形;(3)把一个梯形剪成一个平行四边形和一个三角形。还可以从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。策略与方法: (1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。 (2)体现动手操作,合作学习的学习方式,让学生经历自主探索的过程; (3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。 教学目标:教学目标: 1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。 2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。 3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。 教学准备:教学准备:梯形学具、电脑课件。 教学重点:教学重点: 重点:理解并运用梯形的面积计算公式。 难点:梯形面积公式的推导过程。 教学过程:教学过程:21、复习首先创设一个情境:华润超市举行抽奖活动,请个别同学为父亲抽一份奖品。由奖品的形状来回顾三角形、平行四边形和长方形的面积计算公式及它们的推导过程。1、同学们,你们还记得这些图形的面积计算公式吗?生:长方形的面积计算公式是。 。 。 。 ,平行四边形的面积计算公式是。 。 。 ,三角形的面积计算公式是。 。 。.师:看来同学们对之前学过的知识掌握得挺牢固的。2、师:还记得我们是怎样推导平行四边形的面积计算公式吗?生:师:说得真好,通过剪、拼把平行四边形转化成一个长方形推导出来的(师边讲边演示) 。师:那么三角形的面积计算公式又是怎样推导出来的?哪位同学愿意来演示?生:(一边用平板演示,一边解说过程)3、小结师: 对,我们运用转化的方法,把图形剪、拼成以前学过的图形来推导出它们的计算公式。4、引出课题3出示一块似梯形的草地,请学生猜猜是什么图形,从而过度到梯形面积的学习。(点击课件出示课题) 。生齐读课题。2、新知探究1、师:你能说出梯形各部分的名称吗?生说师点击出现2、猜想师:孩子们,如果要把梯形转化成我们学过的图形,你想把它转化成什么图形?生:三角形、平行四边形、长方形。 。 。 。 。师:同学们很善于思考,老师喜欢开动脑筋的孩子。3、验证师:请拿出老师给大家准备的梯形,与小组讨论,然后动手试一试。 生动手实践,师巡视。 (要求:生剪或画,要用尺子)4、汇报,展示师:同学们把梯形转化成了什么图形呢?哪位同学愿意展示他们的作品。生:(上台展示) ,说:我们用两个完全一们的梯形拼成了一个长方形。我们用两个完全一样的梯形的拼成了一个正方形。我们。 。 。 。 。 。 。 。 。 。 。 。 。 。 。平行四边形。 4我们把一个梯形剪成两个三角形。 (生汇报时,不用走到中间,边拼边讲了)师:真能干,你成功地把梯形转化成我们学过的图形!你们为什么想到把它们拼成一个长方形呢?生:长方形的面积我们会计算,除以 2 就可以得到了这个梯形的面积了。三角形的面积我们已经知道了,所以把这两个三角形的面积加起来就可算出了梯形的面积了。师:掌声送给他!师:还有哪些同学也把梯形转化成了长方形。 。 。 。请举手。(把学生的作品贴在黑板上)。 。 。 。5、小结师:同学们真了不起,能想出这么多种方法来求出梯形的面积。师:刚才同学用梯形转化成了长方形、正方形,还有的转化成了平行四边形和三角形。(师手指黑板上的图形)6、推导师:同学们小组讨论,认为用哪图形来推导出梯形的面积计算公式最方便。生讨论决定用两个完全一定的梯形来拼成的平行四边形推导出梯形的面积计算公式最方便。5师:我们一起来看,刚才我们用两个完全一样的梯形拼成了一个平行四边形,那么这个拼成的平行四边形的面积与一个梯形的面积有什么关系?(课件)生:1 个平行四边形的面积=2 个梯形的面积,1 个梯形的面积=一个平行四边形面积的一半。师:真是个会学习的孩子!你能用一个式子来表示它们的关系吗?生:师:为什么要除以 2生:师:说得真好!师:平行四边形的面积计算公式我们已经知道了,你们能不能通过平行四边形的计算公式,试着推导出梯形的面积计算公式呢?7、小组合作师:请四人一小组,先讨论,然后完成任务单。8、汇报(用手机拍照展示)个别组的学生上台汇报师:大家对他们的汇报有什么疑问吗?生问生答师:都听明白了吗?把掌声送给这个小组。6师:通过大家的努力,我们推导出了梯形的面积计算公式是?师:通常面积我们用字母 s 表示,高我们用字母 h 表示,那么梯形的上底用 a 表示,b 表示梯形的下底,我们如何用字母来表示梯形的面积呢?生:3、练习巩固师:请同学用我们学到的梯形面积计算公式来解决问题。生做练习。 (应用题那道有手机拍照检查)4、拓展1、师:刚才有的同学把梯形剪成两个三角形,我们一起来看它的推导过程(课件视频-微课 2 个)生看视频-微课。师:是呀,我们运用了转化的方法推导出了梯形的面积计算公式是?用字母表示是?生;2、体会梯形面积公式的奇妙之处:用梯形的面积计算公式求出长方形、正方形、平行四边形和三角形的面积。5、课堂小结1、回顾本节课所学的内容,你最大的收获是什么?生:生:72、师小结: 同学们,这节课我们学习了 (生:梯形的面积) ,在学习的过程中运用了一个的非常重要的数学思想那就是, (生:转化思想) ,同学学得很好,这节课我们上到这,下课!
展开阅读全文
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《6 多边形的面积-梯形的面积-ppt课件-(含教案+视频+素材)-部级公开课-人教版五年级上册数学(编号:80307).zip》由用户(小黑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 关 键 词:
-
人教版
数学
_6
多边形
面积
梯形
_ppt
课件
教案
视频
素材
部级
公开
公然
编号
163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。