高中数学试卷.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学试卷.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 试卷 下载 _考试试卷_数学_高中
- 资源描述:
-
1、1.1.1 棱柱、棱锥、棱台的结构特征一、学习目标:一、学习目标:1、知识与技能: (1)能根据几何结构特征对空间物体进行分类。 (2)会用语言概述棱柱、棱锥、棱台的结构特征。 (3)会表示有关几何体以及柱、锥、台的分类。2、过程与方法: (1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。 (2)观察、讨论、归纳、概括所学的知识。3、情感态度与价值观: (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象概括能力。二、学习重点、难点:二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构
2、特征。学习难点:柱、锥、台的结构特征的概括。三、使用说明及学法指导三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。3、A 类是自主探究,B 类是合作交流。四、知识链接四、知识链接: :平行四边形:矩形:正方体:五、学习过程:五、学习过程:A 问题 1:什么是多面体、多面体的面、棱、顶点?A 问题 2:什么是旋转体、旋转体的轴?B 问题 3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C 问题 4;探究一下各种四棱柱之间有何关系?C 问题 5:质疑答辩,排难解惑1
3、有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2 棱柱的任何两个平面都可以作为棱柱的底面吗?A 例 1:如图,截面 BCEF 把长方体分割成两部分,这两部分是否是棱柱?ABCDA1B1C1D1EFB 例 2:一个三棱柱可以分成几个三棱锥?六、达标测试六、达标测试A1、下面没有对角线的一种几何体是()A三棱柱B四棱柱C五棱柱D六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A正方体B正四棱锥C长方体D直平行六面体B3、棱长都是 1 的三棱锥的表面积为()A3B23C33D43B4、正六棱台的两底边长分别为 1cm,2cm,高是 1cm,它的侧面
4、积为()A279cm2B79cm2C323cm2D32cm2B5、若长方体的三个不同的面的面积分别为 2,4,8,则它的体积为()A2B4C8D12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A必须都是直角三角形B至多只能有一个直角三角形C至多只能有两个直角三角形D可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为 3,5,15,则它的体积为_.七、小结与反思:七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。1.1.2 圆柱、锥、台、球、组合体的结构特征一、学习目标:一、学习目标:1、知识与技能:能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、锥
5、、台、组合体的结构特征。会表示圆柱、锥、台的分类。2、过程与方法:通过直观感受空间物体,概括出柱、锥、台的几何结构特征。观察、讨论、归纳、概括所学的知识。3、情感态度与价值观:感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能力。培养空间想象能力和抽象概括能力。二、学习重点、难点:二、学习重点、难点:学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。学习难点:圆柱、锥、台的结构特征的概括。三、使用说明及学法指导三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成
6、 A、B 类问题。3、A 类是自主探究,B 类是合作交流。四、知识链接四、知识链接: :棱柱:棱锥:棱台:五、学习过程:五、学习过程:A 问题 1:观察下列图形探究各自的特点及共同点A 问题 2:什么是圆柱、锥、台?有何特征?如何表示?A 问题 3:什么是球?有何特征?如何表示?A 问 题 4 : 什 么 叫 简 单 组 合 体 ? 简 单 组 合 体 构 成 的 两 种 基 本 形 式 是 一 :;二:。A 例 1:底面半径为 1,高为 2 的圆柱,在 A 点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由 A 点爬到 B 点,问蚂蚁爬行的最短距离是多少?ABA 例 2:已知球的半径为 10cm,一个截
7、面圆的面积是36cm2,则球心到截面圆圆心的距离是.六、达标测试六、达标测试A1、图(1)是由哪个平面图形旋转得到的()ABCDA2、下列说法正确的是()A圆锥的母线长等于底面圆直径B圆柱的母线与轴垂直C圆台的母线与轴平行D球的直径必过球心A3、下列说法正确的个数为()1经过圆柱任意两条母线的截面是一个矩形2连接圆柱上、下底面圆周上的两点的线段是圆柱的母线3圆柱的任意两条母线互相平行A0B.1C.2D.3A4、下列几何体的轴截面一定是圆面的是()A圆柱B.圆锥C.球D.圆台B5、如果两个球的体积之比为 8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9B6、A、B
8、 为球面上不同两点,则通过 A、B 所有大圆的个数()A.1 个B.无数个C. 一个也没有D.1 个或无数个B7、球的半径扩大为原来的 2 倍,它的体积扩大为原来的 _ 倍.七、小结与反思:七、小结与反思:【励志良言】 “三心二意”另解:信心、恒心、决心;创意、乐意。1.2.1 空间几何体的三视图一、学习目标:一、学习目标:知识与技能: (1)掌握画三视图的基本技能;(2)丰富空间想象力过程与方法:主要通过亲身实践,动手作图,体会三视图的作用情感态度与价值观: (1)提高空间想象力(2)体会三视图的作用二、学习重点、难点:二、学习重点、难点:学习重点:画出简单组合体的三视图学习难点:识别三视图
9、所表示的空间几何体三、 使用说明及学法指导使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。3、A 类是自主探究,B 类是合作交流。四、知识链接四、知识链接: :圆柱:圆锥:圆台:五、学习过程:五、学习过程:A 问题:什么是投影、投影线、投影面?投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影和平行投影A 问题 2:什么是中心投影、平行投影?物体上某一点与其投影面上的投影点的连线是平行的,则为平行投影,如果聚于一点,则为中心投影A 问题 3
10、.(1).光线叫做几何体的正视图.(2).光线叫做几何体侧视图.(3).光线叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图。A 例.根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系三视图的画法规则:、。A 例. .请您画出圆柱、圆锥、圆台、球的三视图六、达标测试六、达标测试A1、两条相交直线的平行投影是()A两条相交直线B一条直线C两条平行线D两条相交直线或一条直线A2、如果一个几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A棱柱B棱锥C圆锥D圆柱B3、课本 15 页 1.、2、3、4 题七、小结与反思:七、小结
11、与反思:【励志良言】【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。高一数学必修 2 导学案主备人:备课时间:备课组长:1.2.2 空间几何体的直观图一、学习目标:一、学习目标:知识与技能: (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。情感态度与价值观: (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何作图在生产活动中的应用。二、学习重点、难点:二、学习重点、难点:学
12、习重点:用斜二测画法画空间几何体的直观图。学习难点:用斜二测画法画空间几何体的直观图。三、 使用说明及学法指导使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成 A、B 类问题。3、A 类是自主探究,B 类是合作交流。四、知识链接四、知识链接: :正视图:侧视图:俯视图:五、学习过程:五、学习过程:A 例 1.用斜二测画法画水平放置的正六边形的直观图。画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时
13、,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。B 例 2.用斜二测画法画长、宽、高分别是 4cm、3cm、2cm 的长方体1111ABCDABC D的直观图。B 例 3.课本 P1图 1.2-,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。六、达标测试六、达标测试A1、利用斜二测画法得到的下列结论正确的是()三角形的直观图是三角形平行四边形的直观图是平行四边形正方形的直观图是正方形菱形的直观图是菱形ABCDB2、已知正三角形 ABC 的边长为a,那么它的平面直观图的面积为七、小结与反思:七、小结与反思:【励志良言】【励志良言】生命之灯因热情而点燃,生命之舟因拼搏而
14、前行。高一数学必修 2 导学案主备人:备课时间:备课组长:空间几何体结构空间几何体结构 周测试周测试一、选择题: (50 分)1、在棱柱中()A只有两个面平行B所有的棱都平行C所有的面都是平行四边形D两底面平行,且各侧棱也互相平行2、下列说法错误的是()A:由两个棱锥可以拼成一个新的棱锥B:由两个棱台可以拼成一个新的棱台C:由两个圆锥可以拼成一个新的圆锥D:由两个圆台可以拼成一个新的圆台3、下列说法正确的是()A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面C:以直角梯形的一腰为轴旋转成的是圆台D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半
15、径4、下列关于长方体的叙述不正确的是()A:长方体的表面共有 24 个直角B:长方体中相对的面都互相平行C:长方体中某一底面上的高的长度就是两平行底面间的距离:D;两底面间的棱互相平行且相等的六面体是长方体5、将图 1 所示的三角形线直线 l 旋转一周,可以得到如图 2 所示的几何体的是哪一个三角形()6、如图一个封闭的立方体,它 6 个表面各标出 1、2、3、4、5、6 这 6 个数字,现放成下面 3 个不同的位置,则数字 l、2、3 对面的数字是()A4、5、6B6、4、5C5、4、6D5、6、47、如图,能推断这个几何体可能是三棱台的是()AA1B12,AB3,B1C13,BC4BA1B
16、l1,AB2,BlCl1.5,BC3,A1C12,AC3CAlBl1,AB2,B1Cl1.5,BC3,AlCl2,AC4DABA1B1,BCB1C1,CAC1A18、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是()A (1) (2)B (2) (3)C (1) (3)D (2) (4)9、下列命题中错误的是()A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所有过顶点的
展开阅读全文