5 圆-解决问题-ppt课件-(含教案)-部级公开课-人教版六年级上册数学(编号:e1792).zip
解决问题解决问题小学数学新人教版六年级上册说一说:这两个图形有什么不同?说一说:这两个图形有什么不同?外方内圆外方内圆外圆内方外圆内方外方内圆外方内圆外圆内方外圆内方想一想:想一想: 这两幅图中的圆形和正方形分别有什么关系?这两幅图中的圆形和正方形分别有什么关系?OO外方内圆外方内圆外圆内方外圆内方OOr=1m你能发现什么数学问题?你能发现什么数学问题?合作提纲:合作提纲:1 1、确定要解决的问题是什么?、确定要解决的问题是什么?2 2、用什么方法解决?说一说解决思路(可以剪一剪、拼一、用什么方法解决?说一说解决思路(可以剪一剪、拼一拼、画一画)。拼、画一画)。3 3、列式解答。、列式解答。4 4、你有什么发现?、你有什么发现?小组合作、自主探究小组合作、自主探究R=1m外方内圆外方内圆说一说:两部分之间的面积是多少?说一说:两部分之间的面积是多少?RRORRRRO思考:思考:圆外正方形里面有(圆外正方形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。圆形里面有(圆形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。两部分之间有(两部分之间有( )个边长与圆半径相等的小正方形的面积)个边长与圆半径相等的小正方形的面积。40.86你有什么发现?你有什么发现?外圆内方外圆内方说一说:两部分之间的面积是多少?说一说:两部分之间的面积是多少?0 RR思考:思考:圆内正方形里面有(圆内正方形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。圆形里面有(圆形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。两部分之间有(两部分之间有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。21.14你有什么发现?你有什么发现? 这是一块面积是这是一块面积是1256平方米的圆形草地平方米的圆形草地,要在草地上建一个面积最大的正方形花坛,要在草地上建一个面积最大的正方形花坛,你能求出花坛的占地面积吗?你能求出花坛的占地面积吗?练一练练一练 小明家有一块边长为小明家有一块边长为60厘米的正方形桌布,可厘米的正方形桌布,可惜中间部分破损了,妈妈想修补上破损的部分,请惜中间部分破损了,妈妈想修补上破损的部分,请你帮助她算一算该买多少花布来修补呢?你帮助她算一算该买多少花布来修补呢?请您来帮忙请您来帮忙我选我喜欢: 我县新建一座园林公园,主题广场设计有两个方案我县新建一座园林公园,主题广场设计有两个方案(如(如下图所示)你喜欢哪一种设计方案?如果中心部分占地面积下图所示)你喜欢哪一种设计方案?如果中心部分占地面积均为均为1.5公顷,请你算一算你喜欢的主题广场的占地总面积公顷,请你算一算你喜欢的主题广场的占地总面积是多少公顷?是多少公顷?方圆方方圆方圆方圆圆方圆1.5hm1.5hm解决问题教学设计解决问题教学设计教学内容:人教版六年级上册第五单元 69 页70 页例 3 及相关练习内容。教学目的:1、结合具体情境,认识组合图形的特征,掌握“外方内圆”和“外圆内方”的图形面积的计算方法与图形之间的关系,利用关系解决实际问题。2、让学生经历问题解决的全过程,运用分割、转化、数形结合等多种思维方法进行思考,培养学生解决问题的策略多样性,提高学生发现问题、提出问题、分析问题、解决问题的能力。3、体验数学与实际生活之间的联系,使学生获得数学活动经验的同时感受组合图形的应用价值,适时进行中国传统文化教育。教学重点:掌握“外方内圆”和“外圆内方”的图形面积的计算方法与图形之间的关系。教学难点:对于“外方内圆”和“外圆内方”图形的分析。教学过程:一、情境引入,初步感知图形特点。师:(出示正方形)请看这是什么图形?关于正方形你知道哪些数学知识?(出示圆形)关于圆形你又知道些什么?(出示两个图形拼在一起的图形)说一说这两个图形有什么不同?根据它们的特点给图形起一下名字。今天就让我们走进这方圆世界,来解决问题 (板书课题)(设计意图:创设学生熟悉的图形引入新课,由基本图形构建出组合图形极大地激活学生感官触觉,唤醒学生旧知,通过给图形起名称,极大地激发学生探究欲望,使学生从外观特点联想到探究图形本质特征。 )二、小组合作,探究新知1. 出示 议一议:这两幅图有什么不同之处吗?师:如果我告诉同学们这两幅图中的圆的半径都是 1 米,你能发现什么数学问题?生:圆形面积是多少?生:圆外正方形面积是多少?生:圆内正方形面积是多少?生:圆形和正方形之间部分的面积是多少?师:这是一个有价值的问题,这个问题解决了,前面的问题也都解决了。下面我们就来发挥团队的力量,集思广益,共同克服这个难关。2、根据自学提纲,自主学习。自学提纲:(1) 、我要解决的问题是: (2) 、我的想法是: (3) 、列式解答: (4) 、你有什么发现?3、全班交流,解决方案。图 1 解决方法(一):通过画图可知:圆面积是: 13.14=3.14(平方米)正方形的面积:12=2(米)22=4(平方米)圆与正方形的面积是:4-3.14=0.86(平方米) 解决方法(二):将正方形的面积分割成 4 个完全相等的小正方形。 正方形面积:114=4(平方米) 圆与正方形之间的面积是:4-3.14=0.86(平方米)师:他们组很会思考问题,找到了圆外正方形的面积和圆面积共同拥有的一部分,谁也发现了这一部分?是什么?思考:圆外正方形的面积里面有( )个边长与圆半径相等的小正方形的面积;圆的面积里面有( )个边长与圆半径相等的小正方形的面积;两部分之间的面积里面有( )个边长与圆半径相等的小正方形的面积。你发现了什么?(设计意图:在外圆内方中,知道圆的半径,圆的面积非常好解答。学生通过画辅助线也能够找到边长与圆半径相等的小正方形。如何让学生联想到圆的面积与小正方形的关系是本课知识突破点。学生通过动手实践进一步观察、比较、思考、分析找到圆的面积是小正方形面积的 倍,从而得出在外圆内方中图形之间的关系。教师为学生提供充足的时间和空间,使学生一次次碰撞出思维的火花,开阔学生的思维,构建数学模型。培养了学生概括归纳能力、判断推理能力,这种思维方法策略的习得,将是学生终身受用。 )图 2 的解答方法一:采用画一画的方法可以看出:圆的面积: 13.14=3.14(平方米) 正方形的面积是两个相等的三角形的面积: (21)2=2(平方米)21圆与正方形之间的面积是:3.142=1.14(平方米)解题方法(二):利用剪拼的方法将正方形分成四个同样的小三角形,然后拼摆成两个边长为 1 米的小正方形。正方形的面积为:112=2(平方米)圆与正方形之间的面积是:3.142=1.14(平方米)师:他们组运用转化的方法也找到了圆的面积与正方形面积共同拥有的一部分是什么?思考:圆内正方形的面积里面有( )个边长与圆半径相等的小正方形的面积;圆面积里面有( )边长与圆半径相等的小正方形的面积;两部分之间的面积里面有( )个边长与圆半径相等的小正方形的面积。你发现了什么?(设计意图:面对图 2 中的圆内正方形缺少边长的情境下如何求出它的面积这一难题,孩子们展开多种思考方法。首先运用做辅助线找到与圆形之间的关系,虽然可以进行解决问题,但是孩子们感觉计算繁琐。孩子们展开充分的想象力,动手实践,运用转化的思想方法找出最佳解决方案,使静止的图形运动起来,孩子们在操作过程中深刻感受到转化思想与数形结合不仅能丰富分析和解决问题的策略,更有助于透彻地理解数学关系的本质,进一步提升主动应用策略和解决问题的意识。)三、应用新知、解决问题。1、练一练:一块面积是 1256 平方米的圆形草地,要在草地上建一个面积最大的正方形花坛,你能求出花坛的占地面积吗?学生独立思考,全班交流解答方法。2、请你来帮忙:小明家有一块边长为 60 厘米的正方形桌布,可惜中间部分破损了,妈妈想修补上破损的部分,请你帮助她算一算该买多少花布来修补呢?(设计意图:在解决具体问题过程中,不仅给孩子提供更大的思维空间,鼓励孩子们用多种方法解决问题,同时也是对解决组合图形策略的进一步感知,使得学生认知变得愈加辩证和理性,并为“外方内圆”和“外圆内方”此类图形的计算方法的建立提供理论较为强烈的情感需求。让学生深刻体会到数学与生活之间有着密切联系,使学生感受到学习数学的必要性和应用性,感悟学以致用的道理。 )3、我选我喜欢。我县新建一座园林公园,主题广场设计有两个方案(如下图所示)你喜欢哪一种设计方案?如果中心部分占地面积均为 1.5 公顷,请你算一算你喜欢的主题广场的占地总面积是多少公顷?方中方 圆中圆四、谈谈本课你收获了什么?(设计意图:教师引导学生在“方圆方”与“圆方圆”的知识联系对比中,发现数学知识间的密切联系,并进行合情推理,学生思维得到不断历练。同时使学生进一步体会到方圆文化是我国传统园林的精华,感受到我国传统文化之博大精深。学生在获得实事求是、敢于实践、敢于创新的理性精神同时促进学生持续发展,将培养学生数学素养落到实处。 )
收藏
编号:1907412
类型:共享资源
大小:748.49KB
格式:ZIP
上传时间:2021-11-27
5
文币
- 资源描述:
-
解决问题解决问题小学数学新人教版六年级上册说一说:这两个图形有什么不同?说一说:这两个图形有什么不同?外方内圆外方内圆外圆内方外圆内方外方内圆外方内圆外圆内方外圆内方想一想:想一想: 这两幅图中的圆形和正方形分别有什么关系?这两幅图中的圆形和正方形分别有什么关系?OO外方内圆外方内圆外圆内方外圆内方OOr=1m你能发现什么数学问题?你能发现什么数学问题?合作提纲:合作提纲:1 1、确定要解决的问题是什么?、确定要解决的问题是什么?2 2、用什么方法解决?说一说解决思路(可以剪一剪、拼一、用什么方法解决?说一说解决思路(可以剪一剪、拼一拼、画一画)。拼、画一画)。3 3、列式解答。、列式解答。4 4、你有什么发现?、你有什么发现?小组合作、自主探究小组合作、自主探究R=1m外方内圆外方内圆说一说:两部分之间的面积是多少?说一说:两部分之间的面积是多少?RRORRRRO思考:思考:圆外正方形里面有(圆外正方形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。圆形里面有(圆形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。两部分之间有(两部分之间有( )个边长与圆半径相等的小正方形的面积)个边长与圆半径相等的小正方形的面积。40.86你有什么发现?你有什么发现?外圆内方外圆内方说一说:两部分之间的面积是多少?说一说:两部分之间的面积是多少?0 RR思考:思考:圆内正方形里面有(圆内正方形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。圆形里面有(圆形里面有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。两部分之间有(两部分之间有( )个边长与圆半径相等的小正方形的面积。)个边长与圆半径相等的小正方形的面积。21.14你有什么发现?你有什么发现? 这是一块面积是这是一块面积是1256平方米的圆形草地平方米的圆形草地,要在草地上建一个面积最大的正方形花坛,要在草地上建一个面积最大的正方形花坛,你能求出花坛的占地面积吗?你能求出花坛的占地面积吗?练一练练一练 小明家有一块边长为小明家有一块边长为60厘米的正方形桌布,可厘米的正方形桌布,可惜中间部分破损了,妈妈想修补上破损的部分,请惜中间部分破损了,妈妈想修补上破损的部分,请你帮助她算一算该买多少花布来修补呢?你帮助她算一算该买多少花布来修补呢?请您来帮忙请您来帮忙我选我喜欢: 我县新建一座园林公园,主题广场设计有两个方案我县新建一座园林公园,主题广场设计有两个方案(如(如下图所示)你喜欢哪一种设计方案?如果中心部分占地面积下图所示)你喜欢哪一种设计方案?如果中心部分占地面积均为均为1.5公顷,请你算一算你喜欢的主题广场的占地总面积公顷,请你算一算你喜欢的主题广场的占地总面积是多少公顷?是多少公顷?方圆方方圆方圆方圆圆方圆1.5hm1.5hm解决问题教学设计解决问题教学设计教学内容:人教版六年级上册第五单元 69 页70 页例 3 及相关练习内容。教学目的:1、结合具体情境,认识组合图形的特征,掌握“外方内圆”和“外圆内方”的图形面积的计算方法与图形之间的关系,利用关系解决实际问题。2、让学生经历问题解决的全过程,运用分割、转化、数形结合等多种思维方法进行思考,培养学生解决问题的策略多样性,提高学生发现问题、提出问题、分析问题、解决问题的能力。3、体验数学与实际生活之间的联系,使学生获得数学活动经验的同时感受组合图形的应用价值,适时进行中国传统文化教育。教学重点:掌握“外方内圆”和“外圆内方”的图形面积的计算方法与图形之间的关系。教学难点:对于“外方内圆”和“外圆内方”图形的分析。教学过程:一、情境引入,初步感知图形特点。师:(出示正方形)请看这是什么图形?关于正方形你知道哪些数学知识?(出示圆形)关于圆形你又知道些什么?(出示两个图形拼在一起的图形)说一说这两个图形有什么不同?根据它们的特点给图形起一下名字。今天就让我们走进这方圆世界,来解决问题 (板书课题)(设计意图:创设学生熟悉的图形引入新课,由基本图形构建出组合图形极大地激活学生感官触觉,唤醒学生旧知,通过给图形起名称,极大地激发学生探究欲望,使学生从外观特点联想到探究图形本质特征。 )二、小组合作,探究新知1. 出示 议一议:这两幅图有什么不同之处吗?师:如果我告诉同学们这两幅图中的圆的半径都是 1 米,你能发现什么数学问题?生:圆形面积是多少?生:圆外正方形面积是多少?生:圆内正方形面积是多少?生:圆形和正方形之间部分的面积是多少?师:这是一个有价值的问题,这个问题解决了,前面的问题也都解决了。下面我们就来发挥团队的力量,集思广益,共同克服这个难关。2、根据自学提纲,自主学习。自学提纲:(1) 、我要解决的问题是: (2) 、我的想法是: (3) 、列式解答: (4) 、你有什么发现?3、全班交流,解决方案。图 1 解决方法(一):通过画图可知:圆面积是: 13.14=3.14(平方米)正方形的面积:12=2(米)22=4(平方米)圆与正方形的面积是:4-3.14=0.86(平方米) 解决方法(二):将正方形的面积分割成 4 个完全相等的小正方形。 正方形面积:114=4(平方米) 圆与正方形之间的面积是:4-3.14=0.86(平方米)师:他们组很会思考问题,找到了圆外正方形的面积和圆面积共同拥有的一部分,谁也发现了这一部分?是什么?思考:圆外正方形的面积里面有( )个边长与圆半径相等的小正方形的面积;圆的面积里面有( )个边长与圆半径相等的小正方形的面积;两部分之间的面积里面有( )个边长与圆半径相等的小正方形的面积。你发现了什么?(设计意图:在外圆内方中,知道圆的半径,圆的面积非常好解答。学生通过画辅助线也能够找到边长与圆半径相等的小正方形。如何让学生联想到圆的面积与小正方形的关系是本课知识突破点。学生通过动手实践进一步观察、比较、思考、分析找到圆的面积是小正方形面积的 倍,从而得出在外圆内方中图形之间的关系。教师为学生提供充足的时间和空间,使学生一次次碰撞出思维的火花,开阔学生的思维,构建数学模型。培养了学生概括归纳能力、判断推理能力,这种思维方法策略的习得,将是学生终身受用。 )图 2 的解答方法一:采用画一画的方法可以看出:圆的面积: 13.14=3.14(平方米) 正方形的面积是两个相等的三角形的面积: (21)2=2(平方米)21圆与正方形之间的面积是:3.142=1.14(平方米)解题方法(二):利用剪拼的方法将正方形分成四个同样的小三角形,然后拼摆成两个边长为 1 米的小正方形。正方形的面积为:112=2(平方米)圆与正方形之间的面积是:3.142=1.14(平方米)师:他们组运用转化的方法也找到了圆的面积与正方形面积共同拥有的一部分是什么?思考:圆内正方形的面积里面有( )个边长与圆半径相等的小正方形的面积;圆面积里面有( )边长与圆半径相等的小正方形的面积;两部分之间的面积里面有( )个边长与圆半径相等的小正方形的面积。你发现了什么?(设计意图:面对图 2 中的圆内正方形缺少边长的情境下如何求出它的面积这一难题,孩子们展开多种思考方法。首先运用做辅助线找到与圆形之间的关系,虽然可以进行解决问题,但是孩子们感觉计算繁琐。孩子们展开充分的想象力,动手实践,运用转化的思想方法找出最佳解决方案,使静止的图形运动起来,孩子们在操作过程中深刻感受到转化思想与数形结合不仅能丰富分析和解决问题的策略,更有助于透彻地理解数学关系的本质,进一步提升主动应用策略和解决问题的意识。)三、应用新知、解决问题。1、练一练:一块面积是 1256 平方米的圆形草地,要在草地上建一个面积最大的正方形花坛,你能求出花坛的占地面积吗?学生独立思考,全班交流解答方法。2、请你来帮忙:小明家有一块边长为 60 厘米的正方形桌布,可惜中间部分破损了,妈妈想修补上破损的部分,请你帮助她算一算该买多少花布来修补呢?(设计意图:在解决具体问题过程中,不仅给孩子提供更大的思维空间,鼓励孩子们用多种方法解决问题,同时也是对解决组合图形策略的进一步感知,使得学生认知变得愈加辩证和理性,并为“外方内圆”和“外圆内方”此类图形的计算方法的建立提供理论较为强烈的情感需求。让学生深刻体会到数学与生活之间有着密切联系,使学生感受到学习数学的必要性和应用性,感悟学以致用的道理。 )3、我选我喜欢。我县新建一座园林公园,主题广场设计有两个方案(如下图所示)你喜欢哪一种设计方案?如果中心部分占地面积均为 1.5 公顷,请你算一算你喜欢的主题广场的占地总面积是多少公顷?方中方 圆中圆四、谈谈本课你收获了什么?(设计意图:教师引导学生在“方圆方”与“圆方圆”的知识联系对比中,发现数学知识间的密切联系,并进行合情推理,学生思维得到不断历练。同时使学生进一步体会到方圆文化是我国传统园林的精华,感受到我国传统文化之博大精深。学生在获得实事求是、敢于实践、敢于创新的理性精神同时促进学生持续发展,将培养学生数学素养落到实处。 )
展开阅读全文
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《5 圆-解决问题-ppt课件-(含教案)-部级公开课-人教版六年级上册数学(编号:e1792).zip》由用户(老黑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 关 键 词:
-
人教版
六年级
上册
数学
解决问题
_ppt
课件
教案
部级
公开
公然
编号
e1792
163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。