书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型(高中数学 一师一优课系列)高二数学(选修-人教B版)-复数的加法与减法-1教案.docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:1895215
  • 上传时间:2021-11-24
  • 格式:DOCX
  • 页数:7
  • 大小:281.59KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(高中数学 一师一优课系列)高二数学(选修-人教B版)-复数的加法与减法-1教案.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 一师一优课系列 【高中数学 一师一优课系列】高二数学选修-人教B版-复数的加法与减法-1教案 高中数学 一师一优课 系列 数学 选修 人教 复数 加法 减法 教案 下载 _其他_数学_高中
    资源描述:

    1、教教 案案教学基本信息课题复数的加法与减法学科数学学段: 高中年级高二年级教材书名: 高中数学选修 22出版社: 人民教育出版社出版日期: 2007年 4 月教学设计参与人员姓名单位设计者张秀菊北京师范大学附属中学实施者张秀菊北京师范大学附属中学指导者课件制作者张秀菊北京师范大学附属中学其他参与者教学目标及教学重点、难点教学目标:教学目标:1.掌握复数代数形式的加、减运算法则;理解复数代数形式的加、减运算的几何意义.2.学会类比、化归转化、数形结合等数学思想方法,提升思维的严谨性,知识应用的灵活性,运算的准确性.3.通过类比学习, 能够意识到知识之间的内在联系和相互关系, 意识到数学知识的整体

    2、性。教学重点与难点教学重点与难点重点:复数加法与减法的运算,复数与从原点出发的向量的对应关系.难点:复数加法与减法的运算律,复数加减法运算的几何意义.教学过程(表格描述)教学环节主要教学活动设置意图复习引入复习引入新课讲授新课讲授对于复数i,zabab R R回答下列问题.问题 1.复数 z 的实部?虚部?a,b 满足什么条件时是纯虚数?实数?问题 2.复数的几何意义?复数i,zabab R R探究探究 1: 已知复数? ? h i ,? ? h ?i ,?h ? h?i,猜一猜?h ?, ?h ? h ?的值等于多少?问题 1.两个复数的和是什么数?它的值唯一确定吗?问题 2.两个复数的和的

    3、运算实质是什么?1.1.复数的加法法则:复数的加法法则:设? t h ?,? t h ?t?t? ? ? ,则定义问题 3.实数的加法有交换律、结合律,复数的加法满足这些运算律吗?由特殊值我们发现复数的加法满足交换律和结合律,一般地,对任意复数,交换律和结合律还成立吗?已知复数.dcz ,bazi+=i+=21证明:1221+=+zzzz因为()()()()idbcadicbiazz+=+=+21又因为()()()()ibdacbiadiczz+=+=+21所以有1221+=+zzzz成立。加法的结合律请同学们自己证明2.2.复数的加法运算律:复数的加法运算律:都有对,任意复数,zzz321通

    4、过复习回顾复数概念、几何意义等相关知识,同学们对这一知识结构先有个初步认知,然后自然过渡到对复数代数形式的加减运算及其几何意义的学习情境。加深对复数加法法则的理解,且与实数类比,了解规定的合理性,将实数的运算通性、 通法扩充到复数,有利于同学们理解复数加减法则。希望同学们根据实数加法满足的运算律,大胆尝试先用特殊值归纳复数加法的运算律,然后用一般方法证明,让同学们感受数学知识的严谨性。复平面内点复平面内点 ? t?向量向量()b , aOZ =12(i)(i)zzabcd()() iacbd例题讲解例题讲解探究探究 2 2: 已知复数? ? h i ,? ? h ?i , 求出?h ?,并在复

    5、平面内作出?, ?, ?h ?所对应的向量.问题 1.猜想?, ?所对应的向量与 ?h ?所对应向量有什么关系?问题 2.你能归纳出复数加法的几何意义吗?3.3.复数加法的几何意义:复数加法的几何意义:x复数减法的几何意义:Z1向量加法的平行四边形法则OyZZ2探究探究 3 3:已知复数? ? h i , ? ? h ?i,求?h ?.问题 1.两个复数的差是什么数?它的值唯一确定吗?问题 2.类比复数的加法法则,你能试着归纳出复数减法法则吗?4.4.复数的减法法则:复数的减法法则:设? ? h ?i,? t h ?i?t? ? ? ,则定义5.5.复数减法的几何意义:复数减法的几何意义:()

    6、交换律 1221+=+zzzz通过向量的知识,同学们体会从数形结合的角度来认识复数的加法法则,感受数形结合思想的魅力.同学们可类比加法法则归纳减法法则,感受知识之间的内在联系。两个复数的差与平面()()()结合律 321321+=+zzzzzz12(i)(i)zzabcd()() iacbd注意:只有将差向量平移至以原点为起点时,其终点才能对应该复数.ZxZ1OyZ2例 1.计算(2-5i)+(3+7i)-(5+4i)解:原式=(2+3-5)+(-5+7-4)i= -2i例 2.已知复数求解: (1)(2)所以追问:一个复数与它的共轭复数只差结果是什么?例 3.已知复数i(R),zab a b

    7、,证明:zz是纯虚数,或是0.证明:iii()()2zzababb当0b 时zz是实数当0b 时,zz是纯虚数例 4.已知复数z1= a+5+(a2-3)i,z2= a2+2a-1+(a-1)i,向量的几何解释是一致的,它不仅又一次让我们看到了向量这一工具的功能,也使数和形得到了有机的结合直接运用复数的加、减法运算法则进行运算,运算的本质就是实部与实部相加减,虚部与虚部相加减.正确理解共轭复数的概念。直接运用复数的加、减法运算法则进行运算,对复数概念的理解及应用,注意对参数问题的讨论和解决.1232i,14i,zz11(2) zz12(1) zz132iz11(32i)(32i)6zz214i

    8、z12(32i)(14i)22izz若复数12zz -是纯虚数,求实数 a 的值.解:12zz -=(a2+a-6)+(-a2+a+2)i由纯虚数定义有a2+a-6=0,且-a2+a+20解得a=-3追问 1:复数12zz -是实数,结果是什么?追问 2:复数12zz -是虚数呢?例 5. 已知复数 z 的模为 1,求z-1-i的最大值.解:方法一:设z=x+yi(x,yR),则221xy即x2+y2=1(*)则z-1-i=?Rh ?h ?h ?22112 ()xyxyz-1-i=32 ()xy取mxy将ymx代入(*)式化简可得222210 xmxm由方程有解可得2248(1)0mm 解得2

    9、2m当2mxy 时z-1-i有最大值232 2( 21)所以z-1-i的最大值等于21追问:当z-1-i取最大值时,此时复数z的值?方法二:因为x2+y2=1正确使用复数的加减法法则,准确理解纯虚数的概念。利用常规方法求带有两个变量的最值问题,可以采用二元归一法化归到一个二次函数,利用二次方程有解求最值课堂小结课堂小结课后作业课后作业可设cos ,sin (02 )x y所以有z-1-i=?Rh ?h ?h ?22112 ()xyxy32 (cossin)因为cossin2 sin( +)4所以当5=4时,cossin有最大值是2z-1-i有最大值232 2( 21)所以z-1-i的最大值等于

    10、21方法三:z-1-i几何意义为复平面内点(x, y)到点(1,1)的距离。点(x,y)在圆x2+y2=1的图象上所以z-1-i的最大值是 ?+1此时复数 z 的值可借助方程组R ? ?R?h ? ?解得。知识方面:复数的加法、减法运算法则和运算律复数的加法、减法的几何意义思想方法:类比、化归转化、数形结合等数学思想方法1.计算两个变量的最值问题还可以使用三角代换法。再利用三角函数求最值问题。利用复数的几何意义画出图形,在图形中找到答案,进一步强调数形结合思想.(1)()()ii7+5+3+4; (2)()()ii2+5-3-;(3)()()ii23+2+3-; (4)()i 2+4+3.2.计算(1)()()ii2+35+4-; (2)()()ii542+3-;(3)()()()iii7+4+52+3-;(4)()()()()iiii7+3+451+1-3.已知,-,-,iziziz+4=4+1=3+5=321321+zzz-通过几何作图,求对应的向量,再用计算加以验证.【课后作业参考答案】1. (1)i10+9; (2)i-2; (3)0; (4)i 2+7.2. (1)i 3+1; (2)i 7+7-; (3)i10+4-;(4)i13+8-3.izzz6+8=+321-

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(高中数学 一师一优课系列)高二数学(选修-人教B版)-复数的加法与减法-1教案.docx
    链接地址:https://www.163wenku.com/p-1895215.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库