书签 分享 收藏 举报 版权申诉 / 3
上传文档赚钱

类型1.数与式教案.doc

  • 上传人(卖家):四川天地人教育
  • 文档编号:1870525
  • 上传时间:2021-11-16
  • 格式:DOC
  • 页数:3
  • 大小:229KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《1.数与式教案.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    教案 下载 _初高中衔接_数学_高中
    资源描述:

    1、第一讲第一讲 数与式数与式 在初中,我们已学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简 称为数与式代数式中有整式(多项式、单项式)、分式、根式它们具有实数的属性,可以进行运算在 多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多 项式的运算简便由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内 容,补充三个数和的完全平方公式、立方和、立方差公式在根式的运算中,我们已学过被开方数是实数 的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本 节中要补充基于同样的

    2、原因,还要补充“繁分式”等有关内容 一、乘法公式一、乘法公式 【公式【公式 1 1】平方差公式: 22 ()()abab ab 【公式【公式 2 2】完全平方公式: 222 ()2abaabb 【公式【公式 3 3】完全立方公式: 33223 ()33abaa babb 【公式【公式 4 4】cabcabcbacba222)( 2222 (完全平方公式完全平方公式) 证明证明: 2222 )(2)()()(ccbabacbacba cabcabcbacbcacbaba222222 222222 . 等式成立 【例例 1 1】计算: 22 ) 3 1 2(xx 解解:原式= 22 3 1 )2(

    3、xx 222222 432 111 ()(2 )( )2(2)22(2 ) 333 82 21 2 2. 339 xxxxxx xxxx 说明说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列 【公式【公式 5 5】 3322 )(babababa( (立方和公式立方和公式) ) 证明证明: : 3332222322 )(bababbaabbaabababa. . 【公式【公式 6 6】 3322 )(babababa( (立方差公式立方差公式) ) 证明证明: 22223333 ()()()()() ()ab aabbabaabbabab . . 【例例 2 2】计算: (1))416)

    4、(4( 2 mmm(2)) 4 1 10 1 25 1 )( 2 1 5 1 ( 22 nmnmnm (3))164)(2)(2( 24 aaaa(4) 22222 )(2(yxyxyxyx 解解:(1)原式= 333 644mm. (2)原式= 3333 8 1 125 1 ) 2 1 () 5 1 (nmnm. (3)原式=644)()44)(4( 63322242 aaaaa. (4)原式= 2222222 )()()(yxyxyxyxyxyx 6336233 2)(yyxxyx. 说明说明:在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构 【例例 3 3】已知

    5、2 310 xx ,求 3 3 1 x x 的值 解解: 2 310 xx 0 x3 1 x x 原式=18)33(33) 1 )( 1 () 1 1)( 1 ( 22 2 2 x x x x x x x x 说明说明:本题若先从方程 2 310 xx 中解出x的值后,再代入代数式求值,则计算较烦本题则根据条件 式与求值式的联系,用整体代换的方法计算,简化了计算 引申引申:)(3 222333 cabcabcbacbaabccba 二、指数式二、指数式 当nN时, an n aaaa 个 . 当nQ时,零指数 0 1(0)aa,负指数 1 (0) n n aa a . 分数指数(0, n mn

    6、 m aaam n为正整数). 幂运算法则:(1),(2)(),(3)() ( ,0,) mnm nmnmnnnn aaaaaaba ba bm nZ . 【例例 4 4】求下列各式的值: 3 2 8 , 2 1 100 , 4 3 ) 81 16 ( 解:422)2(8 2 3 3 3 2 3 2 3 2 ; 10 1 )10( 1 100 1 100 2 1 2 1 2 1 2 ; 8 27 2 3 3 2 ) 3 2 () 81 16 ( 3 3 3 3 4 4 4 3 4 3 【例例 5 5】计算下列各式 )3()6)(2( 6 5 6 1 3 1 2 1 2 1 3 2 bababa

    7、 ; 8 )( 8 3 4 1 qp 解: aabbabababa444)3()6)(2( 0 6 5 3 1 2 1 6 1 2 1 3 2 6 5 6 1 3 1 2 1 2 1 3 2 ; 3 2 32888 )()()( 8 3 4 1 8 3 4 1 q p qpqpqp 三、根式三、根式 式子(0)a a 叫做二次根式,其性质如下: (1) 2 ()(0)aa a(2) 2 |aa (3)(0,0)abab ab(4)(0,0) bb ab a a 如果有 n xa,那么x叫做a的n次方根,其中n为大于1的整数 当当 n n 为奇数时,为奇数时, nn aa,当,当 n n 为偶数

    8、时,为偶数时, ,0 | ,0 nna a aa a a . . 【例例 6 6】化简下列各式化简下列各式: (1) 22 ( 32)( 31)(2) 22 (1)(2) (1)xxx 解解:(1) 原式=|32|31| 2331 1 (2) 原式= (1)(2)23 (2) |1|2| (1)(2)1 (1x2) xxxx xx xx 说明说明:请注意性质 2 |aa的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论 【例例 7 7】计算(没有特殊说明,本节中出现的字母均为正数): (1) 3 23 (2) 11 ab (3) 3 28 2 x xx 解解:(1) 原式= 2

    9、 3(23)3(23) 63 3 23(23)(23) (2) 原式= 22 aba bab abab (3) 原式= 22 2 22222 23 2 22 x x xxxx xxxx x . 说明说明:(1)二次根式的化简结果应满足:被开方数的因数是整数,因式是整式;被开方数不含能 开得尽方的因数或因式 (2)二次根式的化简常见类型有下列两种:被开方数是整数或整式化简时,先将它分解因数或因 式,然后把开得尽方的因数或因式开出来;分母中有根式(如 3 23 )或被开方数有分母(如 2 x )这时 可将其化为 a b 形式(如 2 x 可化为 2 x ) ,转化为 “分母中有根式”的情况化简时,

    10、要把分母中的根 式化为有理式,采取分子、分母同乘以一个根式进行化简(如 3 23 化为 3(23) (23)(23) ,其中23 与23叫做互为有理化因式) 四、分式四、分式 当分式 A B 的分子、分母中至少有一个是分式时, A B 就叫做繁分式繁分式,繁分式的化简常用以下两种方法: (1) 利用除法法则;(2) 利用分式的基本性质 【例例 8 8】化简 1 1 x x x x x 解法一解法一:原式= 22 2 (1)1 1(1) 1(1)(1)1 1 x xxxxxx xxxx xxxxx xxx xxxx x x 解法二解法二:原式= 2 2 (1)1 (1)(1) 11 1 () x

    11、 xxxxx xxxxx xxxx xxx xx xx x 说明说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式 的基本性质 AAm BBm 进行化简一般根据题目特点综合使用两种方法 【例例 9 9】化简 2 33 3961 62279 xxxx xxxx 解解:原式= 2 23 3961161 2(3)3(3)(3)2(3)(3)(39)(9) xxxxx xxxxxxxxxx 2 2(3)12(1)(3)(3)3 2(3)(3)2(3)(3)2(3) xxxxx xxxxx . 说明说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简; (2) 分式的计算结果应是最简分式或整式

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1.数与式教案.doc
    链接地址:https://www.163wenku.com/p-1870525.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库