第3节 等比数列及其前n项和.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第3节 等比数列及其前n项和.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 及其 下载 _其他_数学_高中
- 资源描述:
-
1、第第 3 节节等比数列及其前等比数列及其前 n 项和项和 知识梳理 1.等比数列的概念 (1)定义:如果数列an从第 2 项起,每一项与它的前一项之比都等于同一个常数 q,即an 1 an q 恒成立,则称an为等比数列,其中 q 称为等比数列的公比. (2)等比中项:如果 x,G,y 是等比数列,则称 G 为 x 与 y 的等比中项,且 G2 xy. 2. 等比数列的通项公式及前 n 项和公式 (1)若等比数列an的首项为 a1,公比是 q,则其通项公式为 ana1qn 1; 通项公式的推广:anamqn m. (2)等比数列的前 n 项和公式:当 q1 时,Snna1;当 q1 时,Sna
2、1(1q n) 1q a1anq 1q . 3.等比数列的性质 已知an是等比数列,Sn是数列an的前 n 项和. (1)若正整数 s,t,p,q 满足 stpq,则 asatapaq,特别地,如果 2spq, 则 a2sapaq. (2)相隔等距离的项组成的数列仍是等比数列,即 ak,akm,ak2m,仍是等比数 列,公比为 qm. (3)当 q1,或 q1 且 n 为奇数时,Sn,S2nSn,S3nS2n,仍成等比数列, 其公比为 qn. (4)若an是公比为 q 的等比数列,则 SnmSnqnSm(n,mN). 1.若数列an, bn(项数相同)是等比数列, 则数列can(c0), |a
3、n|, a2n, 1 an, anbn, an bn也是等比数列. 2.由 an1qan,q0,并不能立即断言an为等比数列,还要验证 a10. 3.若an是公比为 q 的等比数列,S 偶,S奇分别是数列的偶数项和与奇数项和,则 在其前 2n 项中,S 偶 S 奇 q. 4.三个数成等比数列,通常设为x q,x,xq;四个符号相同的数成等比数列,通常 设为 x q3, x q,xq,xq 3. 诊断自测 1.判断下列结论正误(在括号内打“”或“”) (1)等比数列公比 q 是一个常数,它可以是任意实数.() (2)三个数 a,b,c 成等比数列的充要条件是 b2ac.() (3)数列an的通项
4、公式是 anan,则其前 n 项和为 Sna(1a n) 1a .() (4)数列an为等比数列,则 S4,S8S4,S12S8成等比数列.() 答案(1)(2)(3)(4) 解析(1)在等比数列中,q0. (2)若 a0,b0,c0 满足 b2ac,但 a,b,c 不成等比数列. (3)当 a1 时,Snna. (4)若 a11,q1,则 S40,S8S40,S12S80,不成等比数列. 2.已知an是等比数列,a22,a51 4,则公比 q 等于( ) A.1 2 B.2C.2D.1 2 答案D 解析由题意知 q3a5 a2 1 8,即 q 1 2. 3.等比数列an的首项 a11,前 n
5、 项和为 Sn,若S10 S5 31 32,则a n的通项公式 an_. 答案 1 2 n1 解析因为S10 S5 31 32,所以 S10S5 S5 1 32, 因为 S5,S10S5,S15S10成等比数列,且公比为 q5, 所以 q5 1 32,q 1 2,则 a n 1 2 n1 . 4.(2018北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法 计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度 音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与 它的前一个单音的频率的比都等于 12 2.若第一个单音的频率为 f,则第八个单音
6、的频率为() A. 3 2fB. 3 22f C. 12 25fD. 12 27f 答案D 解析由题意知十三个单音的频率依次构成首项为 f,公比为 12 2的等比数列, 设此数列为an,则 a8 12 27f, 即第八个单音的频率为 12 27f. 5.(多选题)(2021潍坊调研)已知等比数列an的各项均为正数,且 3a1,1 2a 3,2a2 成等差数列,则下列说法正确的是() A.a10B.q0 C.a3 a23 或1 D.a6 a49 答案ABD 解析设等比数列an的公比为 q, 由题意得 2 1 2a 3 3a12a2,即 a1q23a12a1q. 因为数列an的各项均为正数,所以
7、a10,且 q0,故 A,B 正确; 由 q22q30,解得 q3 或 q1(舍), 所以a3 a2q3, a6 a4q 29,故 C 错误,D 正确,故选 ABD. 6.(2019全国卷)设 Sn为等比数列an的前 n 项和.若 a11 3,a 2 4a6,则 S5 _. 答案 121 3 解析由 a24a6得(a1q3)2a1q5,整理得 q 1 a13. 所以 S5a1(1q 5) 1q 1 3(13 5) 13 121 3 . 考点一等比数列基本量的运算 1.(多选题)(2021日照调研)已知在等比数列an中,a37,前三项之和 S321, 则公比 q 的值是() A.1B.1 2 C
8、.1 2 D.1 答案AB 解析当 q1 时,an7,S321,符合题意; 当 q1 时,由 a1q27, a1(1q3) 1q 21,得 q 1 2. 综上,q 的值是 1 或1 2,故选 AB. 2.(2020全国卷)记 Sn为等比数列an的前 n 项和.若 a5a312,a6a424, 则Sn an( ) A.2n1B.221 n C.22n 1 D.21 n1 答案B 解析设等比数列an的公比为 q, 则 qa6a4 a5a3 24 122. 所以Sn an a1(12n) 12 a12n 1 2 n1 2n 1 221 n. 3.(2020新高考海南卷)已知公比大于 1 的等比数列a
展开阅读全文