(高中数学优秀教案设计说课稿)重庆-数学归纳法及应用举例(邹安宇).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(高中数学优秀教案设计说课稿)重庆-数学归纳法及应用举例(邹安宇).doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学优秀教案设计说课稿 高中数学 优秀 教案设计 说课稿 重庆 数学 归纳法 应用 举例 邹安宇 下载 _其他_数学_高中
- 资源描述:
-
1、数学归纳法及应用举例第一课说课方案数学归纳法及应用举例第一课说课方案 重庆市第二十九中学校邹安宇 一、说教材一、说教材 (一)教材分析(一)教材分析 本课是数学归纳法的第一节课。 前面学生已经通过数列一章内容和其它相关内容的学习, 初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法 它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结 论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必 须进一步学习严谨的科学的论证方法数学归纳法。数学归纳法安排在数列之后极限之前, 是促进学生从有限思维发展到无限思维的一个重
2、要环节。并且,本节内容是培养学生严密的 推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标(二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归 纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问 题的主动探究,但主动提出问题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生 具有独立人格和创新能力的重要标志。如何让学生主动置疑和提出问题?本课也想在这方面 作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下 教学目标。 1.1.知识目标知识目标 (1)了解由有限
3、多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.2.能力目标能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力 和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生 的创新能力。 3.3.情感目标情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和 不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使 学生喜
4、欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点(三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.1.重重 点点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.2.难难 点点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当 n=k+1 时结论正确。 二、说教法二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、 学生之间共
5、同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导, 又强调学生的主体性、主动性、平等性、开放性、合作性。这种教学方法的优点是学生心态 开放,主体性和主动性凸现,独立的个性得到张扬,因而创造性得到解放。 三、说学法三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。 本课学生的学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习, 在探究问题的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探
6、 究过程中形成坚韧不拔的精神。学生掌握了这种学习方法后,对学生终身学习,终身发展都 有积极意义,这就是让学生学会学习。 四、说教学过程四、说教学过程 主干层次为:创设情景(提出问题); 探索解决问题的方法(建立数学模型); 方法尝试(感性认识); 理解升华(理性认识); 方法应用(解决问题); 课堂小结(反馈与提高) 。 教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程, 符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而 培养学生的创新意识。 具体过程安排如下: (一)创设问题情景(一)创设问题情景 1.情景创设 情景一:生活中的实际例
展开阅读全文