书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型2022届福建名校联盟优质校高三第一次调研考试数学试题.pdf

  • 上传人(卖家):四川天地人教育
  • 文档编号:1708279
  • 上传时间:2021-09-08
  • 格式:PDF
  • 页数:5
  • 大小:1.29MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2022届福建名校联盟优质校高三第一次调研考试数学试题.pdf》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 福建 名校 联盟 优质 校高三 第一次 调研 考试 数学试题 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、2022 届福建名校联盟优质校高三第一次调研2022 届福建名校联盟优质校高三第一次调研 数学数学 姓名_准考证号_ 本试卷共 5 页,总分 150 分,考试时间 120 分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写 在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只 有一项符合题目要求的。 1. 令

    2、 ? ?= 1,2 , ? ?= ?, 1 ,若 ? ? ? ?,则实数 ? 的值是 A.2B.1C.2 D.1 2. 抛物线 ?2= 16? 的准线方程是 A.? = 8B.? = 4C.? = 8D.? = 4 3.设 ?, ? ?,? 0, ? 2 ,则 ? sin ? + ? cos ? 的最小值是 A. ? 3 5+ ? 3 5 5 3 B. ? 4 5+ ? 4 5 5 4 C. ? 1 2+ ? 1 2 2 D. ? 1 4+ ? 1 4 4 4. 甲和乙是同班同学,该班级共 52 名同学. 一次两人玩一个游戏,甲先在心里想好 该班某一位同学的名字,乙来猜,其中乙可以提问 ? 个

    3、问题,问题必须一次性问完(意 思是乙问完所有问题后才能得到每个问题的答案). 对每个问题,甲只能回答“是” 或“不是”. 若存在一种提问的策略,使得无论一开始甲想的是谁,乙一定能够猜出, 则 ? 的最小值是 A.5B.6 C.7D.8 5. 对任意 2022 个锐角 ? = 1,2, 2022 满足 ?=1 2022 tan?= 21011,均有 ?=1 2022 cos ? ?,则 ? 的最小值是 A.2019B.2020C.2021 D.2022 6. 要在每个班级抽取一名学生参加晚读小测.具体的抽取方法是: 计算两名数学课代表 的座位号之和与两名英语课代表座位号之和的差的绝对值,则最后的

    4、结果就是被抽中 学生的座号.(每个班的数学课代表和英语课代表至少各一名,至多各两名,若只有一 名或某名同学同时担任数学课代表和英语课代表,则在上述计算中重复代入这名同学 的座号;若计算结果不是任何一名学生的座号,则在这个班不抽取,假设每个班的数学 课代表和英语课代表的座号是等可能分布的). 已知某班级共有 50 名学生,则某名学 第 1 页,共 5 页 生被抽中的概率的最大值是 A. 833 62500 B. 716 15625 C. 833 31250 D. 792 15625 7. 在 3 3 方格表的每个小方格中填入 1,0,1 中的一个数,要求 ? 1,2,3 , 第 ? 行和第 ?

    5、列各自的三个数之和均要不小于 2 ?,则所有可能的填法总数是 A.1335B.2147C.685 D.716 8.记 ? 行 ? 列的数阵中第 ? 行 ? 列的数为 ?,?,数阵内所有数之和为 ?=1 ? ?=1 ? ?,?. 若 ? ?,? 0,? ?+,?.?. ? ? ? ?+, ? ?=1 ? ?=1 ? ?,? ?, 则定义 ? = ?1?1?,? ?. 根据以上定义,计算 ?=1 3 ?1 ?1 ?!?! ?! ? + ? + ? ! =? A.242? 2 3 B.? 27 2 C.4? 231 6 D.7? 260 6 二、选择题:本题共 4 小题,每小题 5 分,共 20 分

    6、。在每小题给出的四个选项中,有 多项符合题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分。 9. 两个集合 ? 和 ? 之间若存在一一对应关系,则称 ? 和 ? 等势,记为 ?.例如:若 ? 为正整数集,? 为正偶数集,则 ? ,因为可构造一一映射 ? ? ? = 2?. 下列说法中正确的是 A.两个有限集合等势的充分必要条件是这两个集合的元素个数相同. B.对三个无限集合 ?,?, ?,若 ?,? ,则 ?. C.正整数集与正实数集等势. D.在空间直角坐标系中,若 ? 表示球面:?2+ ?2+ ?2= 2? 上所有点的集合,? 表示平 面 ? 上所有点的集合,则 ?

    7、. 10. 设整数 ? 2, ? 是正实数, ? 是非零实数.数列 ?满足: ?1= ?,?+1= ? ? + ?. 下列说法中正确的是 A. 当 ? 0 且 ? 为偶数时, ?有界的充要条件是 ?1 2. B. 当 ? 0 且 ? 为偶数时, ?有界的充要条件是 ? 1. C. 当 ? 0 时, ?有界的充要条件是 ?1 ?1 ?1 ? . D. 当 ? 0 时, ?有界的充要条件是 ?1 ? ?+1 ?+1. 11. 设四面体 ?1?2?3?4 的六条棱长分别为 ?1, ?2, , ?6,体积为 ?,四个面的面积分别 为 ?1, ?2, ?3, ?4,面 ? 与面 ? 所成的内二面角为 ?

    8、 1 ? ? 4 ,?1, ?2, ?3, ?4 为任意 第 2 页,共 5 页 四个正实数,? 为空间里任意一点. 下列不等式对任意满足 ?均为锐角的四面体恒成立的是 A. ?=1 4 ? 2 ? 2 1?4 ?cos ?. B. ?=1 4 ? ?=1 4 ? 2 ? 1?4 ? 2. C. 1?6 ? 2?2 ? ?=1 6 ? 4 ? 108 3 3? 4 3. D. 1?6 cos ? 1 729 . 12. 我们称某个曲线族的包络线(Envelope),是跟该曲线族的每条曲线都有至少一点 相切的一条曲线.(曲线族即一些曲线的无穷集,它们有一些特定的关系) 下列关于包络线的说法正确的

    9、是 A. 设 ? 是以原点为圆心,半径为 2 的圆上的一个动点,过 ? 引椭圆 ?: ?2+ 2?2= 2 的 两条切线,切点分别为 ?,?. 当 ? 运动时,直线族 ? 的包络线所围成的封闭图形的面积是 ? 2 . B. 给定正实数 ?,线段族 ? ? cos ? + ? ? sin ? = 1 ?, ? 0, ? 0, ? 2 的包络线与两坐标轴围 成图形的面积为 3? 32 ?2. C. 设 ? 内接于椭圆 ?1:3?2+ 4?2= 12, 且直线 ?、 直线 ? 均与圆 ?2:?2+ ?2= 1 相切,则直线 ? 的包络线为圆. D. 设半径相等的圆 ?1和圆 ?2相交,圆心分别是 ?

    10、1和 ?2. ?1和 ?2分别是圆 ?1和 圆 ?2上的两个动点.开始时 ?1和 ?2分别位于构成两圆重叠部分的两段弧上(不含两 段弧的交点)且 ?1?2?1?2.现使 ?1和 ?2以相同的角速度绕各自的圆心作逆时针匀 速圆周运动,则直线 ?1?2的包络线是椭圆. 三、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13. 对任意三个模长小于 1 的复数 ?1,?2, ?3, 均有 ?1?2+ ?2?3+ ?3?1 2 + ?1?2?3 2 ? 恒成立,则实数 ? 的最小可能值是. 14.设 ?,? 为正整数 ,空间中一物体由 ? 个完全相同的1 1 1的表面涂满红色的 小立方体构成

    11、, 且其三视图均为全部涂满红色的 ? ? 的方格表 (允许小立方体悬空) , 则 ? 的最小值 ? ? =; ;当 ? = 4 时, 规定若主视方向不同但经过旋转或轴反射 后能完全重合的属于不同的情形,则能够达到 ? 4 的情形数为. 15. 给定 ? 2, ? ?,设 ?1, ?2,? ? 且 ?=1 ? ? 2 ?+ ?=1 ?1 ?+1?= 1,则对每个固定 第 3 页,共 5 页 的 ? ? ?,1 ? ? , max 1? ?=. 16. 设 12 元实数集合 ? = ?1, ?2,?12 满足:可将其划分为两个 6 元子集 ?1,?2, ?6 和 ?7,?8,?12,使得对每个 ?

    12、 1,2,3,4,5,均有 ?=1 6 ? ? ?= ?=7 12 ? ? ?,则 这样的 ? 可以是. (写出一个即可) 四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。 17. (本题满分 10 分) 在 ? 中,? = ? 7,? = 2? 7 ,? 是内心,?,?,? 分别交对边于 ?,?, ?. (I)直接写出图中的一对相似三角形. (II)求?. 18. (本题满分 12 分) 记函数 ? ? = ? + ?ln 1 ln ? , ? ?,其导函数为 ? ? . (I)讨论 ? ? 的单调性. (II)当 ? = 1 时,设 ? ?1,? ?1,

    13、 ? ?2,? ?2, ?1 2?0. 19. (本题满分 12 分) 班级里共有 ? ? 3 名学生,其中有 ?,?, ?.已知 ?,?,? 中任意两人均为朋友,且三人 中每人均与班级里中超过一半的学生为朋友. 若对于某三个人,他们当中任意两人均 为朋友,则称他们组成一个“朋友圈”. (I)求班级里朋友圈个数的最大值 ? ? . (II)求班级里朋友圈个数的最小值 ? ? . 20. (本题满分 12 分) 数列 ?满足:?1= ? 0, ?+1= ? 2 + 1 4? . 第 4 页,共 5 页 (I)当 ? =2 时,求 ?的通项公式. (II)记 ? 为正有理数集(?+)的一个子集,?

    14、= ? ?,其中 ? 和 ?是互素的正整数. 现定义性质 ? 为:? ?+,? ? ? ?+,均有 2? 2 ? 2 为定值. 是否存在 ? 满足以下两个要求: 1? ?, ? 满足性质 ? ;2? ?+?, ? 不满足性质 ? . 证明你的结论. 21. (本题满分 12 分) 等轴双曲线是离心率为 2 的双曲线,可建立合适的坐标平面使之为反比例函数. (I)在等轴双曲线 ? = 1 上有三点 ?, ?,?,其横坐标依次是7,11,13. 设 ?,?, ? 分别为 ?, ?, ? 的中点,试求 ? 的外接圆圆心的横坐标. (II)双曲线 ? 的渐近线为 ?1和 ?2,? 上有三个不同的点 ?

    15、, ?,?,直线 ?、直线 ?、 直线 ? 与 ?1分别交于 ?1,?1,?1,过 ?1, ?1, ?1分别作直线 ?、直线 ?、直线 ? 的 垂线 ?1,?1,?1. (i)当 ? 为等轴双曲线时,证明: ?1,?1,?1三线共点. (ii)当 ? 不为等轴双曲线时,记 ?1,?1,?1分别是 ?1与 ?1,?1与 ?1,?1与 ?1 的交点,类似地从另一条渐近线 ?2出发来定义 ?2,?2, ?2. 证明: ?1?1?1 ?2?2?2. 22. (本题满分 12 分) 空间中由若干平面多边形所圈成的封闭的立体叫做多面体,这些平面多边形称为多面 体的面,这些多边形的边和顶点分别称为多面体的棱和顶点. 我们称一个多面体为凸 多面体,当且仅当该多面体全部位于其每一面所决定的平面的同一侧.例如:四面体、 平行六面体、棱锥、棱柱、棱台都是凸多面体. 设多面体恰有 100 条棱. (I)当 ? 为凸多面体时,求最大整数 ?,使得存在某个平面恰与的 ? 条棱相交. (II)当 ? 为非凸多面体时,证明: (i)存在 ? 和平面 ? 使得 ? 恰与 ? 的 98 条棱相交. (ii)不存在 ? 和平面 ? 使得 ? 与 ? 的 100 条棱均相交. 第 5 页,共 5 页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届福建名校联盟优质校高三第一次调研考试数学试题.pdf
    链接地址:https://www.163wenku.com/p-1708279.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库