书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型(步步高 高中理科数学 教学资料)第3讲 数学归纳法及其应用.doc

  • 上传人(卖家):四川天地人教育
  • 文档编号:1705660
  • 上传时间:2021-09-06
  • 格式:DOC
  • 页数:6
  • 大小:83.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(步步高 高中理科数学 教学资料)第3讲 数学归纳法及其应用.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    步步高 高中理科数学 教学资料 【步步高 高中理科数学 教学资料】第3讲数学归纳法及其应用 步步高 高中 理科 数学 教学 资料 归纳法 及其 应用 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、第第 3 讲讲数学归纳法及其应用数学归纳法及其应用 一、选择题 1.用数学归纳法证明“2n2n1 对于 nn0的正整数 n 都成立”时,第一步证 明中的起始值 n0应取() A.2B.3C.5D.6 解析n1 时,212,2113,2n2n1 不成立; n2 时,224,2215,2n2n1 不成立; n3 时,238,2317,2n2n1 成立. n 的第一个取值 n03. 答案B 2.某个命题与正整数有关,如果当 nk(kN*)时该命题成立,那么可以推出 n k1 时该命题也成立.现已知 n5 时该命题成立,那么() A.n4 时该命题成立 B.n4 时该命题不成立 C.n5,nN*时该命

    2、题都成立 D.可能 n 取某个大于 5 的整数时该命题不成立 解析显然 A,B 错误,由数学归纳法原理知 C 正确,D 错. 答案C 3.利用数学归纳法证明不等式“11 2 1 3 1 2n1 n 2(n2,nN *)”的过程 中,由“nk”变到“nk1”时,左边增加了() A.1 项B.k 项C.2k 1 项D.2k项 解析左边增加的项为 1 2k 1 2k1 1 2k 11共 2 k项,故选 D. 答案D 4.对于不等式 n2nn1(nN*),某同学用数学归纳法证明的过程如下: (1)当 n1 时, 12111,不等式成立. (2)假设当 nk(kN*)时,不等式k2kk1 成立,当 nk

    3、1 时, (k1)2k1 k23k2 (k23k2)(k2) (k2)2 (k1)1. 当 nk1 时,不等式成立,则上述证法() A.过程全部正确 B.n1 验得不正确 C.归纳假设不正确 D.从 nk 到 nk1 的推理不正确 解析在 nk1 时,没有应用 nk 时的假设,不是数学归纳法. 答案D 5.用数学归纳法证明 123n2n 4n2 2 ,则当 nk1 时左端应在 nk 的基础上加上() A.k21 B.(k1)2 C.(k1) 4(k1)2 2 D.(k21)(k22)(k1)2 解析当 nk 时,左端123k2. 当 nk1 时,左端123k2(k21)(k22)(k1)2,

    4、故当 nk1 时,左端应在 nk 的基础上加上(k21)(k22)(k1)2. 故选 D. 答案D 二、填空题 6.设 Sn11 2 1 3 1 4 1 2n,则 S n1Sn_. 解析Sn111 2 1 2n 1 2n1 1 2n2n, Sn11 2 1 3 1 4 1 2n. Sn1Sn 1 2n1 1 2n2 1 2n3 1 2n2n. 答案 1 2n1 1 2n2 1 2n3 1 2n2n 7.数列an中,已知 a12,an1 an 3an1(nN *),依次计算出 a2,a3,a4,猜 想 an_. 解析a12,a2 2 321 2 7,a 3 2 7 32 71 2 13,a 4

    5、2 13 3 2 131 2 19.由此, 猜想 an是以分子为 2,分母是以首项为 1,公差为 6 的等差数列.an 2 6n5. 答案 2 6n5 8.凸 n 多边形有 f(n)条对角线.则凸(n1)边形的对角线的条数f(n1)与 f(n)的递 推关系式为_. 解析f(n1)f(n)(n2)1f(n)n1. 答案f(n1)f(n)n1 三、解答题 9.用数学归纳法证明:1 1 22 1 32 1 n22 1 n(nN *,n2). 证明(1)当 n2 时,1 1 22 5 42 1 2 3 2,命题成立. (2)假设 nk 时命题成立,即 1 1 22 1 32 1 k22 1 k. 当

    6、nk1 时,1 1 22 1 32 1 k2 1 (k1)22 1 k 1 (k1)22 1 k 1 k(k1)2 1 k 1 k 1 k12 1 k1,命题成立. 由(1)(2)知原不等式在 nN*,n2 时均成立. 10.数列an满足 Sn2nan(nN*). (1)计算 a1,a2,a3,a4,并由此猜想通项公式 an; (2)证明(1)中的猜想. (1)解当 n1 时,a1S12a1,a11; 当 n2 时,a1a2S222a2,a23 2; 当 n3 时,a1a2a3S323a3,a37 4; 当 n4 时,a1a2a3a4S424a4, a415 8 . 由此猜想 an2 n1 2

    7、n 1 (nN*). (2)证明当 n1 时,a11,结论成立. 假设 nk(k1 且 kN*)时,结论成立, 即 ak2 k1 2k 1 ,那么 nk1 时, ak1Sk1Sk2(k1)ak12kak2akak1, 2ak12ak. ak12ak 2 22 k1 2k 1 2 2 k11 2k . 所以当 nk1 时,结论成立. 由知猜想 an2 n1 2n 1 (nN*)成立. 11.(2017昆明诊断)设 n 为正整数,f(n)11 2 1 3 1 n,经计算得 f(2) 3 2, f(4)2, f(8)5 2, f(16)3, f(32) 7 2, 观察上述结果, 可推测出一般结论(

    8、) A.f(2n)2n1 2 B.f(n2)n2 2 C.f(2n)n2 2 D.以上都不对 解析因为 f(22)4 2, f(2 3)5 2, f(2 4)6 2, f(2 5)7 2, 所以当 n1 时, 有 f(2 n)n2 2 . 答案C 12.设 f(x)是定义在正整数集上的函数,且 f(x)满足:“当 f(k)k2成立时,总可 推出 f(k1)(k1)2成立”.那么,下列命题总成立的是() A.若 f(1)1 成立,则 f(10)100 成立 B.若 f(2)4 成立,则 f(1)1 成立 C.若 f(3)9 成立,则当 k1 时,均有 f(k)k2成立 D.若 f(4)16 成立

    9、,则当 k4 时,均有 f(k)k2成立 解析选项 A,B 的答案与题设中不等号方向不同,故 A,B 错;选项 C 中, 应该是 k3 时,均有 f(k)k2成立;对于选项 D,满足数学归纳法原理,该命 题成立. 答案D 13.设平面上 n 个圆周最多把平面分成 f(n)片(平面区域), 则 f(2)_, f(n) _.(n1,nN*) 解析易知 2 个圆周最多把平面分成 4 片;n 个圆周最多把平面分成 f(n)片, 再放入第 n1 个圆周,为使得到尽可能多的平面区域,第 n1 个应与前面 n 个都相交且交点均不同,有 n 条公共弦,其端点把第 n1 个圆周分成 2n 段, 每段都把已知的某

    10、一片划分成 2 片, 即 f(n1)f(n)2n(n1), 所以 f(n)f(1) n(n1),而 f(1)2,从而 f(n)n2n2. 答案4n2n2 14.数列xn满足 x10,xn1x2nxnc(nN*). (1)证明:xn是递减数列的充要条件是 c0; (2)若 0c1 4,证明数列x n是递增数列. 证明(1)充分性:若 c0,由于 xn1x2nxncxncxn,数列xn是 递减数列. 必要性:若xn是递减数列,则 x2x1,且 x10. 又 x2x21x1cc,c0. 故xn是递减数列的充要条件是 c0. (2)若 0c1 4,要证x n是递增数列. 即 xn1xnx2nc0, 即证 xn c对任意 n1 成立. 下面用数学归纳法证明: 当 0c1 4时,x n c对任意 n1 成立. 当 n1 时,x10 c1 2,结论成立. 假设当 nk(k1,kN*)时结论成立,即 xk c. 因为函数 f(x)x2xc 在区间 ,1 2 内单调递增, 所以 xk1f(xk)f( c) c, 当 nk1 时,xk1 c成立. 由,知,xn c对任意 n1,nN*成立. 因此,xn1xnx2ncxn,即xn是递增数列.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(步步高 高中理科数学 教学资料)第3讲 数学归纳法及其应用.doc
    链接地址:https://www.163wenku.com/p-1705660.html
    四川天地人教育
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx
  • 2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库