(步步高 高中理科数学 教学资料)12.3.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(步步高 高中理科数学 教学资料)12.3.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 高中理科数学 教学资料 【步步高 高中理科数学 教学资料】12.3 步步高 高中 理科 数学 教学 资料 12.3 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、12.3几何概型几何概型 最新考纲考情考向分析 1.了解随机数的意义, 能运用随机模拟的方法 估计概率. 2.了解几何概型的意义. 以理解几何概型的概念、概率公式为主,会 求一些简单的几何概型的概率,常与平面几 何、线性规划、不等式的解集、定积分等知 识交汇考查在高考中多以选择、填空题的 形式考查,难度为中档. 1几何概型 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率 模型为几何概率模型,简称为几何概型 2在几何概型中,事件 A 的概率的计算公式 P(A) 构成事件 A 的区域长度面积或体积 试验的全部结果所构成的区域长度面积或体积. 3要切实理解并掌握几
2、何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性 4随机模拟方法 (1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似 值的方法就是模拟方法 (2)用计算器或计算机模拟试验的方法为随机模拟方法这个方法的基本步骤是用计算器或 计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;统计代表某意义的随机 数的个数 M 和总的随机数个数 N;计算频率 fn(A)M N作为所求概率的近似值 题组一思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)在一个正方形区域内任取一点的概率
3、是零() (2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每 一点被取到的机会相等() (3)在几何概型定义中的区域可以是线段、平面图形、立体图形() (4)随机模拟方法是以事件发生的频率估计概率() (5)与面积有关的几何概型的概率与几何图形的形状有关() (6)从区间1,10内任取一个数,取到 1 的概率是 P1 9.( ) 题组二教材改编 2P137 思考在线段0,3上任投一点,则此点坐标小于 1 的概率为() A.1 2 B.1 3 C.1 4 D1 答案B 解析坐标小于 1 的区间为0,1),长度为 1,0,3的区间长度为 3,故所求概率为1 3.
4、3P140T1有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部 分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是() 答案A 解析P(A)3 8,P(B) 2 8,P(C) 2 6,P(D) 1 3, P(A)P(C)P(D)P(B) 4P146B 组 T4设不等式组 0 x2, 0y2 表示的平面区域为 D,在区域 D 内随机取一个点, 则此点到坐标原点的距离大于 2 的概率是() A. 4 B.2 2 C. 6 D.4 4 答案D 解析如图所示,正方形 OABC 及其内部为不等式组表示的平面区域 D,且区域 D 的面积为 4,而阴影部分表示的是区域 D 内到坐标原
5、点的距离大于 2 的区域易知该阴影部分的面积 为 4.因此满足条件的概率是4 4 ,故选 D. 题组三易错自纠 5在区间2,4上随机地取一个数 x,若 x 满足|x|m 的概率为5 6,则 m_. 答案3 解析由|x|m,得mxm. 当 0m2 时,由题意得2m 6 5 6,解得 m2.5,矛盾,舍去 当 2m|AC|的 概率为_ 答案 1 6 解析设事件 D 为“作射线 CM,使|AM|AC|” 在 AB 上取点 C使|AC|AC|, 因为ACC是等腰三角形, 所以ACC18030 2 75, 事件 D 发生的区域D907515, 构成事件总的区域90, 所以 P(D)D 15 90 1 6
6、. 题型一题型一与长度、角度有关的几何概型与长度、角度有关的几何概型 1某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐 班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是() A.1 3 B.1 2 C.2 3 D.3 4 答案B 解析如图所示,画出时间轴 小明到达的时间会随机的落在图中线段 AB 中,而当他的到达时间落在线段 AC 或 DB 上时, 才能保证他等车的时间不超过 10 分钟,根据几何概型, 得所求概率 P1010 40 1 2,故选 B. 2.如图, 四边形 ABCD 为矩形, AB 3, BC1,
7、以 A 为圆心, 1 为半径作四分之一个圆弧DE, 在DAB 内任作射线 AP,则射线 AP 与线段 BC 有公共点的概率为_ 答案 1 3 解析因为在DAB 内任作射线 AP,所以它的所有等可能事件所在的区域 H 是DAB,当 射线 AP 与线段 BC 有公共点时,射线 AP 落在CAB 内,则区域 H 为CAB,所以射线 AP 与线段 BC 有公共点的概率为CAB DAB 30 90 1 3. 3在区间0,5上随机地选择一个数 p,则方程 x22px3p20 有两个负根的概率为 _ 答案 2 3 解析方程 x22px3p20 有两个负根, 则有 0, x1x20, x1x20, 即 4p2
8、43p20, 2p0, 3p20, 解得 p2 或2 3p1,又 p0,5, 则所求概率为 P 31 3 5 10 3 5 2 3. 思维升华 求解与长度、角度有关的几何概型的方法 求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度), 然后求解要特别注意“长度型”与“角度型”的不同解题的关键是构建事件的区域(长度 或角度) 题型二题型二与面积有关的几何概型与面积有关的几何概型 命题点 1与平面图形面积有关的问题 典例 (2017全国)如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中 的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随
9、机取一点,则此点取自 黑色部分的概率是_ 答案 8 解析不妨设正方形 ABCD 的边长为 2,则正方形内切圆的半径为 1,可得 S正方形4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得 S黑S白1 2S 圆 2,所以由 几何概型知,所求概率 P S黑 S正方形 2 4 8. 命题点 2与线性规划知识交汇命题的问题 典例 由不等式组 x0, y0, yx20 确定的平面区域记为1,由不等式组 xy1, xy2 确定的 平面区域记为2,若在1中随机取一点,则该点恰好在2内的概率为_ 答案 7 8 解析如图,平面区域1就是三角形区域 OAB,平面区域2与平面区域1的重叠部分就是 区域
10、OACD, 易知 C 1 2, 3 2 ,故由几何概型的概率公式,得所求概率 PS 四边形OACD SOAB S OABSBCD SOAB 21 4 2 7 8. 命题点 3与定积分交汇命题的问题 典例 如图,点 A 的坐标为(1,0),点 C 的坐标为(2,4),函数 f(x)x2.若在矩形 ABCD 内随机取 一点,则此点取自阴影部分的概率为_ 答案 5 12 解析由题意知,阴影部分的面积 S21(4x2)dx 32 1 1 (4)| 3 xx5 3, 所以所求概率 P S S矩形ABCD 5 3 14 5 12. 思维升华 求解与面积有关的几何概型的注意点 求解与面积有关的几何概型时,关
11、键是弄清某事件对应的面积,必要时可根据题意构造两个 变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解 跟踪训练 (1)(2016全国)从区间0,1随机抽取 2n 个数 x1,x2,xn,y1,y2,yn,构 成 n 个数对(x1,y1),(x2,y2),(xn,yn),其中两数的平方和小于 1 的数对共有 m 个,则 用随机模拟的方法得到的圆周率的近似值为() A.4n m B.2n m C.4m n D.2m n 答案C 解析由题意得(xi,yi)(i1,2,n)在如图所示方格中,而平方和小于 1 的点均在如图所 示的阴影中,由几何概型概率计算公式知 4 1 m n, 4m
12、 n ,故选 C. (2)(2017石家庄调研)在满足不等式组 xy10, xy30, y0 的平面内随机取一点 M(x0,y0),设 事件 A“y02x0”,那么事件 A 发生的概率是() A.1 4 B.3 4 C.1 3 D.2 3 答案B 解析作出不等式组 xy10, xy30, y0 的平面区域即ABC,其面积为 4,且事件 A“y02x0”表示的区域为 AOC,其面积为 3,所以事件 A 发生的概率是3 4. (3)如图,在边长为 e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的 概率为_ 答案 2 e2 解析由题意知,所给图中两阴影部分面积相等,故阴影部分面
13、积为 S210(eex)dx2(ex ex)|102ee(01)2.又该正方形的面积为 e2, 故由几何概型的概率公式可得所求概率为 2 e2. 题型三题型三与体积有关的几何概型与体积有关的几何概型 典例 (1)已知正三棱锥 SABC 的底面边长为 4,高为 3,在正三棱锥内任取一点 P,使得 VPABC1 2V SABC的概率是() A.7 8 B.3 4 C.1 2 D.1 4 答案A 解析当 P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求, 由几何概型知, P11 8 7 8. (2)如图, 正方体 ABCDA1B1C1D1的棱长为 1, 在正方体内随机取点 M
14、, 则使四棱锥 MABCD 的体积小于1 6的概率为_ 答案 1 2 解析过点 M 作平面 RS平面 AC,则两平面间的距离是四棱锥 MABCD 的高,显然点 M 在平面 RS 上任意位置时, 四棱锥 MABCD 的体积都相等 若此时四棱锥 MABCD 的体积 等于1 6,只要 M 在截面以下即可小于 1 6,当 V MABCD1 6时,即 1 311h 1 6,解得 h 1 2,即 点 M 到底面 ABCD 的距离,所以所求概率 P 111 2 111 1 2. 思维升华 求解与体积有关的几何概型的注意点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空
展开阅读全文