(步步高 高中理科数学 教学资料)3.1.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(步步高 高中理科数学 教学资料)3.1.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 高中理科数学 教学资料 【步步高 高中理科数学 教学资料】3.1 步步高 高中 理科 数学 教学 资料 3.1 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、3.1导数的概念及运算导数的概念及运算 最新考纲考情考向分析 1.了解导数概念的实际背景 2.通过函数图象直观理解导数的几何意义 3.能根据导数定义求函数 yc(c 为常数), y x,yx2,yx3,y1 x,y x的导数 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,(理)能求简 单的复合函数(仅限于形如 f(axb)的复合函 数)的导数. 导数的概念和运算是高考的必考 内容,一般渗透在导数的应用中 考查;导数的几何意义常与解析 几何中的直线交汇考查;题型为 选择题或解答题的第(1)问,低档 难度. 1导数与导函数的概念 (1)一般地,函数 yf(x)在 xx0处
2、的瞬时变化率是 lim x0 y x lim x0 fx0 xfx0 x ,我 们称它为函数 yf(x)在 xx0处的导数,记作 f(x0)或 0 x x y ,即 f(x0) lim x0 y x lim x0 fx0 xfx0 x . (2)如果函数 yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新 函数,这个函数称为函数 yf(x)在开区(a,b)间内的导函数记作 f(x)或 y. 2导数的几何意义 函数 yf(x)在点 x0处的导数的几何意义, 就是曲线 yf(x)在点 P(x0, f(x0)处的切线的斜率 k, 即 kf(x0) 3基本初等函数的导数
3、公式 基本初等函数导函数 f(x)c(c 为常数)f(x)0 f(x)x(Q*)f(x)x 1 f(x)sin xf(x)cos x f(x)cos xf(x)sin x f(x)exf(x)ex f(x)ax(a0,a1)f(x)axln a f(x)ln xf(x)1 x f(x)logax(a0,a1)f(x) 1 xln a 4.导数的运算法则 若 f(x),g(x)存在,则有 (1)f(x)g(x)f(x)g(x); (2)f(x)g(x)f(x)g(x)f(x)g(x); (3) fx gx fxgxfxgx gx2 (g(x)0) 5复合函数的导数 复合函数 yf(g(x)的导数
4、和函数 yf(u),ug(x)的导数间的关系为 yxyuux,即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 知识拓展 1奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数 2af(x)bg(x)af(x)bg(x) 3函数 yf(x)的导数 f(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的方向, 其大小|f(x)|反映了变化的快慢,|f(x)|越大,曲线在这点处的切线越“陡” 题组一思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)f(x0)是函数 yf(x)在 xx0附近的平均变化率() (2)f(x0)与f(
5、x0)表示的意义相同() (3)与曲线只有一个公共点的直线一定是曲线的切线() (4)函数 f(x)sin(x)的导数是 f(x)cos x() 题组二教材改编 2P85A 组 T5若 f(x)xex,则 f(1). 答案2e 解析f(x)exxex,f(1)2e. 3P18A 组 T6曲线 y1 2 x2在点(1,1)处的切线方程为 答案2xy10 解析y 2 x22,y| x12. 故所求切线方程为 2xy10. 题组三易错自纠 4 如图所示为函数 yf(x), yg(x)的导函数的图象, 那么 yf(x), yg(x)的图象可能是() 答案D 解析由 yf(x)的图象知,yf(x)在(0
6、,)上单调递减,说明函数 yf(x)的切线的斜 率在(0,)上也单调递减,故可排除 A,C. 又由图象知 yf(x)与 yg(x)的图象在 xx0处相交,说明 yf(x)与 yg(x)的图象在 x x0处的切线的斜率相同,故可排除 B.故选 D. 5有一机器人的运动方程为 st23 t(t 是时间,s 是位移),则该机器人在时刻 t2 时的瞬时 速度为() A.19 4 B.17 4 C.15 4 D.13 4 答案D 6设函数 f(x)的导数为 f(x),且 f(x)f 2 sin xcos x,则 f 4 . 答案 2 解析因为 f(x)f 2 sin xcos x, 所以 f(x)f 2
7、 cos xsin x, 所以 f 2 f 2 cos 2sin 2, 即 f 2 1,所以 f(x)sin xcos x, f(x)cos xsin x. 故 f 4 cos 4sin 4 2. 7已知函数 f(x)ax3x1 的图象在点(1,f(1)处的切线过点(2,7),则 a. 答案1 解析f(x)3ax21,f(1)3a1, 又 f(1)a2, 切线方程为 y(a2)(3a1)(x1), 又点(2,7)在切线上,可得 a1. 题型一题型一导数的计算导数的计算 1f(x)x(2 018ln x),若 f(x0)2 019,则 x0等于() Ae2B1 Cln 2De 答案B 解析f(x
8、)2 018ln xx1 x2 019ln x,故由 f(x 0)2 019,得 2 019ln x02 019, 则 ln x00,解得 x01. 2若函数 f(x)ax4bx2c 满足 f(1)2,则 f(1)等于() A1B2 C2D0 答案B 解析f(x)4ax32bx, f(x)为奇函数且 f(1)2, f(1)2. 3已知 f(x)x22xf(1),则 f(0). 答案4 解析f(x)2x2f(1), f(1)22f(1),即 f(1)2. f(x)2x4,f(0)4. 思维升华 导数计算的技巧 (1)求导之前,应对函数进行化简,然后求导,减少运算量 (2)复合函数求导时,先确定复
9、合关系,由外向内逐层求导,必要时可换元 题型二题型二导数的几何意义导数的几何意义 命题点 1求切线方程 典例 (1)曲线 f(x) ex x1在 x0 处的切线方程为 答案2xy10 解析根据题意可知切点坐标为(0,1), f(x)x1e xexx1 x12 x2e x x12 , 故切线的斜率 kf(0)02e 0 012 2, 则直线的方程为 y(1)2(x0), 即 2xy10. (2)已知函数 f(x)xln x,若直线 l 过点(0,1),并且与曲线 yf(x)相切,则直线 l 的方程 为 答案xy10 解析点(0,1)不在曲线 f(x)xln x 上, 设切点为(x0,y0) 又f
10、(x)1ln x, 直线 l 的方程为 y1(1ln x0)x. 由 y0 x0ln x0, y011ln x0 x0, 解得 x01,y00. 直线 l 的方程为 yx1,即 xy10. 引申探究 本例(2)中, 若曲线 yxln x 上点P 的切线平行于直线 2xy10, 则点 P 的坐标是 答案(e,e) 解析y1ln x,令 y2,即 1ln x2, xe,点 P 的坐标为(e,e) 命题点 2求参数的值 典例 (1)直线 ykx1 与曲线 yx3axb 相切于点 A(1,3),则 2ab. 答案1 解析由题意知,yx3axb 的导数 y3x2a, 则 13ab3, 312ak, k1
11、3, 由此解得 k2,a1,b3,2ab1. (2)已知 f(x)ln x,g(x)1 2x 2mx7 2(m0),直线 l 与函数 f(x),g(x)的图象都相切,与 f(x)图 象的切点为(1,f(1),则 m. 答案2 解析f(x)1 x, 直线 l 的斜率 kf(1)1. 又 f(1)0,切线 l 的方程为 yx1. g(x)xm, 设直线 l 与 g(x)的图象的切点为(x0,y0), 则有 x0m1,y0 x01,y01 2x 2 0mx07 2,m0, m2. 命题点 3导数与函数图象 典例 (1)已知函数 yf(x)的图象是下列四个图象之一,且其导函数 y f(x)的图象如图所
12、示,则该函数的图象是() 答案B 解析由yf(x)的图象是先上升后下降可知, 函数yf(x)图象的切线的斜率先增大后减小, 故选 B. (2)已知 yf(x)是可导函数,如图,直线 ykx2 是曲线 yf(x)在 x3 处的切线,令 g(x) xf(x),g(x)是 g(x)的导函数,则 g(3). 答案0 解析由题图可知曲线 yf(x)在 x3 处切线的斜率等于1 3,f(3) 1 3. g(x)xf(x),g(x)f(x)xf(x), g(3)f(3)3f(3), 又由题图可知 f(3)1, g(3)13 1 3 0. 思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方
13、面: (1)已知切点 A(x0,f(x0)求斜率 k,即求该点处的导数值 kf(x0) (2)若求过点 P(x0, y0)的切线方程, 可设切点为(x1, y1), 由 y1fx1, y0y1fx1x0 x1 求解即可 (3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况 跟踪训练 (1)(2017山西孝义模拟)已知 f(x)x2,则曲线 yf(x)过点 P(1,0)的切线方程 是 答案y0 或 4xy40 解析设切点坐标为(x0,x20), f(x)2x,切线方程为 y02x0(x1), x202x0(x01), 解得 x00 或 x02, 所求切线方程为 y0 或
展开阅读全文