集合-高考数学.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《集合-高考数学.doc》由用户(汀枫)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合 高考 数学 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、集合集合 考试内容:考试内容: 集合、子集、补集、交集、并集 逻辑联结词四种命题充分条件和必要条件 考试要求:考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合 (2)理解逻辑联结词“或” 、 “且” 、 “非”的含义理解四种命题及其相互关系;掌握充分条 件、必要条件及充要条件的意义 01. 集合与简易逻辑集合与简易逻辑集合与简易逻辑集合与简易逻辑知识要点知识要点知识要点知识要点 一、知识结构一、知识结构: : 本章知识主要分为集合、简单不等式的解法(集合化简) 、简易逻辑三部
2、分: 二、知识回顾:二、知识回顾: (一)(一) 集合集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: 任何一个集合是它本身的子集,记为AA ; 空集是任何集合的子集,记为A; 空集是任何非空集合的真子集; 如果BA ,同时AB ,那么 A = B. 如果CACBBA,那么,. 注:Z= 整数()Z =全体整数 () 已知集合 S 中 A 的补集是一个有限集,则集合 A 也是有限集.() (例:S=N; A= N, 则 C CsA= 0) 空集的补集是全集. 若集
3、合 A=集合 B,则 C CBA=,C CAB =C CS(C CAB) =D(注: C CAB =) . 3. (x,y)|xy =0,xR,yR坐标轴上的点集. (x,y)|xy0,xR,yR二、四象限的点集. (x,y)|xy0,xR,yR 一、三象限的点集. 注:对方程组解的集合应是点集. 例: 132 3 yx yx 解的集合(2,1). 点集与数集的交集是. (例:A =(x,y)| y =x+1B=y|y =x2+1则 AB =) 4. n 个元素的子集有 2n个.n 个元素的真子集有 2n1 个.n 个元素的非空真子 集有 2n2 个. 5. 一个命题的否命题为真,它的逆命题一
4、定为真. 否命题逆命题. 一个命题为真,则它的逆否命题一定为真. 原命题逆否命题. 例:若325baba或,则应是真命题. 解:逆否:a = 2 且 b = 3,则 a+b = 5,成立,所以此命题为真. ,且21yx3 yx. 解:逆否:x + y =3x = 1 或 y = 2. 21yx且3 yx,故3 yx是21yx且的既不是充分,又不是必要条件. 小范围推出大范围;大范围推不出小范围. 3. 例:若255xxx或,. 4. 集合运算:交、并、补. |, | , ABx xAxB ABx xAxB AxUxA U 交:且 并:或 补:且C 5. 主要性质和运算律 (1)包含关系: ,
5、,;,;,. U AAA AUAU AB BCAC ABA ABB ABA ABB C (2)等价关系: U ABABAABBABUC (3)集合的运算律: 交换律:.;ABBAABBA 结合律:)()();()(CBACBACBACBA 分配律:.)()()();()()(CABACBACABACBA 0-1 律:,AAA UAA UAU 等幂律:.,AAAAAA 求补律:ACUA= =ACUA=U=UC CUU= =C CU U=U 反演律:CU(AB)= (C(CUA) )(C CUB) )C CU(AB)= (C(CUA) )(C CUB) ) 6. 有限集的元素个数 定义:有限集 A
展开阅读全文