集合与函数-高考数学.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《集合与函数-高考数学.doc》由用户(汀枫)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合 函数 高考 数学 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第 1 页 共 15 页 集合集合 考试内容考试内容:集合、子集、补集、交集、并集逻辑联结词四种命题充分条件和必要条件 考试要求:考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合 (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充 分条件、必要条件及充要条件的意义 01.01. 集合与简易逻辑集合与简易逻辑集合与简易逻辑集合与简易逻辑知识要点知识要点知识要点知识要点 一、知识结构一、知识结构: : 本章知识主要分为集合、简单不等式的解法(集合化简
2、)、简易逻辑三部分: 二、知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: 任何一个集合是它本身的子集,记为AA ; 空集是任何集合的子集,记为A; 空集是任何非空集合的真子集; 如果BA ,同时AB ,那么A = B. 如果CACBBA,那么,. 注:Z= 整数()Z=全体整数 () 已知集合S中A的补集是一个有限集,则集合 A 也是有限集.()(例:S=N; A= N, 则 C CsA= 0) 空集的补集是全集. 若集合A=集合B,则 C
3、CBA=,C CAB=C CS(C CAB) =D(注: C CAB=) . 第 2 页 共 15 页 3. (x,y)|xy=0,xR,yR坐标轴上的点集. (x,y)|xy0,xR,yR二、四象限的点集. (x,y)|xy0,xR,yR 一、三象限的点集. 注:对方程组解的集合应是点集. 例: 132 3 yx yx 解的集合(2,1). 点集与数集的交集是. (例:A =(x,y)|y=x+1B=y|y=x 2+1 则AB=) 4. n个元素的子集有 2 n个. n个元素的真子集有 2 n 1 个.n个元素的非空真子 集有 2 n2 个. 5. 一个命题的否命题为真,它的逆命题一定为真.
4、 否命题逆命题. 一个命题为真,则它的逆否命题一定为真. 原命题逆否命题. 例:若325baba或,则应是真命题. 解:逆否:a= 2 且b= 3,则a+b= 5,成立,所以此命题为真. ,且21yx3 yx. 解:逆否:x + y=3x =1 或y= 2. 21yx且3 yx,故3 yx是21yx且的既不是充分,又不是必要条件. 小范围推出大范围;大范围推不出小范围. 3. 例:若255xxx或,. 4. 集合运算:交、并、补. |, | , ABx xAxB ABx xAxB AxUxA U 交:且 并:或 补:且C 5. 主要性质和运算律 (1)包含关系: , ,;,;,. U AAA
5、AUAU AB BCAC ABA ABB ABA ABB C (2)等价关系: U ABABAABBABUC (3)集合的运算律: 交换律:.;ABBAABBA 结合律:)()();()(CBACBACBACBA 分配律:.)()()();()()(CABACBACABACBA 0-1 律:,AAA UAA UAU 等幂律:.,AAAAAA 第 3 页 共 15 页 求补律:ACUA= =ACUA=U=UC CUU= =C CU U=U 反演律:CU(AB)= (C(CUA) )(C CUB) )C CU(AB)= (C(CUA) )(C CUB) ) 6. 有限集的元素个数 定义:有限集 A
6、 的元素的个数叫做集合 A 的基数,记为 card( A)规定 card() =0. 基本公式: (1)()( )( )() (2)()( )( )( ) ()()() () card ABcard Acard Bcard AB card ABCcard Acard Bcard C card ABcard BCcard CA card ABC (3) card( ( UA)= )= card(U)- card(A) (二)含绝对值不等式、一元二次不等式的解法及延伸 1.1.整式不等式的解法整式不等式的解法 根轴法根轴法(零点分段法) 将不等式化为 a0(x-x1)(x-x2)(x-xm)0(0
7、”,则找“线”在 x 轴上方的区间;若不等 式是“b 解的讨论; 一元二次不等式 ax 2+box0(a0)解的讨论. 000 二次函数 cbxaxy 2 (0a)的图象 一元二次方程 的根0 0 2 a cbxax 有两相异实根 )(, 2121 xxxx 有两相等实根 a b xx 2 21 无实根 第 4 页 共 15 页 原 命 题 若 p则 q 否 命 题 若 p则 q 逆 命 题 若 q则 p 逆 否 命 题 若 q则 p 互 为 逆 否 互 逆否 互 为 逆否 互 互逆 否 互 的解集)0( 0 2 a cbxax 21 xxxxx或 a b xx 2R 的解集)0( 0 2 a
8、 cbxax 21 xxxx 2.分式不等式的解法 (1)标准化:移项通分化为 )( )( xg xf 0(或 )( )( xg xf 0); )( )( xg xf 0(或 )( )( xg xf 0)的形式, (2) 转化为整式不等式 (组) 0)( 0)()( 0 )( )( ; 0)()(0 )( )( xg xgxf xg xf xgxf xg xf 3.含绝对值不等式的解法 (1)公式法:cbax,与)0( ccbax型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论. (3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布 一元二次方程 a
9、x 2+bx+c=0(a0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑三)简易逻辑 1、命题的定义:可以判断真假的语句叫做命题。 2、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单 命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。 构成复合命题的形式:p 或 q(记作“pq” );p 且 q(记作“pq” );非 p(记 作“q” ) 。 3、“或”、“且”、“非”的真值判断 (1)“非 p”形式复合命题的真假
10、与 F 的真假相 反; (2)“p 且 q”形式复合命题当 P 与 q 同为真时 为真,其他情况时为假; (3)“p 或 q”形式复合命题当 p 与 q 同为假时 为假,其他情况时为真 4、四种命题的形式: 原命题:若 P 则 q;逆命题:若 q 则 p; 否命题:若P 则q;逆否命题:若q 则p。 (1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题; 第 5 页 共 15 页 (3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题 5、四种命题之间的相互关系: 一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)
展开阅读全文