书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型专题09双星问题-物理核心探秘-高考物理.pdf

  • 上传人(卖家):汀枫
  • 文档编号:1679512
  • 上传时间:2021-08-23
  • 格式:PDF
  • 页数:5
  • 大小:264.21KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《专题09双星问题-物理核心探秘-高考物理.pdf》由用户(汀枫)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题09 双星问题-物理核心探秘-高考物理 专题 09 双星 问题 物理 核心 探秘 高考 下载 _一轮复习_高考专区_物理_高中
    资源描述:

    1、公众号:中学生上分;精品资料群:902943580 1 专题九、双星问题专题九、双星问题 问题分析 近年来,天文学家发现银河系中大部分恒星都存在于双星或多星系统中,它们有着固定的轨道,这对研究天 体运动十分重要双星是指两颗相隔一定距离、并绕着连线上的某点做周期相同的匀速圆周运动的天体,有关双 星的试题是高考的一个热点, 同时也是一个难点, 在天体运动中, 与双星问题相似的还有三星问题、 四星问题等, 它们的运动原理相似 1双星透视的特点 (1)两星球绕着连线的中点做匀速圆周运动,周期相同,角速度相同,各自的运行半径之和等于两星球之间的姬 离,即 12 rrL (2)两星球之间的万有引力分别提供

    2、了两星球做匀速圆周运动的向心力,即两星球运行的向心力相等,则 2 12 11 22 4m m Gmr LT , 2 12 22 22 4m m Gmr LT (3)如果知道了两星球的质量 1 m、 2 m和相互之间的距离L, 那么就可以求出两星球运行的轨道半径, 即 1 12 2 m rm r, 2 1 12 m rL mm , 1 2 12 m rL mm (4)在运动过程中,两星球与旋转中心三者始终共线,即两星球的角速度、周期相同; (5)在双星问题中, 两星球运动的轨道半径与引力半径是不相同的, 两星球的引力半径为L, 而轨道半径为 1 r、2r 2解题策略 在高考中,有关双星的试题信息

    3、量比较大,一般比较难,这就需要考生能从题干中提取有用的信息,综合运 用相关知识求解问题,构成双星系统的两星球之间的万有引力与各自做匀速圆周运动的向心力相等,运行周期相 等,角速度也相等,这是处理双星问题的突破口解题时,就是利用这三个关系列方程求解 3三星透视 常见的三星透视有两种情况:一种是三颗星球在同一直线上,两边的星球绕中间的星球做匀速圆周运动;另 一种情况是三颗星球在等边三角形的顶点上,绕三角形的中心运动,运行轨迹为等边三角形的外接圆. 透视透视1 1 考查双星透视中的速度问题考查双星透视中的速度问题 在双星透视中,两星球运行的角速度相等,但是两星球的线速度不相等,通常是利用万有引力与向

    4、心力相等, 即 2 2 2 Mmv Gmmr rr 来求速度问题. 【题 1】月球与地球质量之比约为 1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们 都围绕月地连线上某点O做匀速圆周运动据此观点,可知月球与地球绕O点运动的线速度大小之比约为 () A1:6 400B1: 80 公众号:中学生上分;精品资料群:902943580 2 C80:1D6 400:1 【解析】 月球和地球绕O做匀速圆周运动, 它们之间的万有引力提供各自的向心力, 则地球和月球的向心力相等, 且月球、地球和点O始终共线,说明月球和地球有相同的角速度和周期,因此有 22 mrmr 地地月月,所以 8

    5、0 = 1 vrm vrm 月月地 地地月 ,C 正确,A、B、D 错误 透视透视2 2 考查双星透视中的质量问题考查双星透视中的质量问题 在双星透视中,如果知道了两星球的质量 1 m、 2 m和相互之间的距离L,就可以求出两星球运行的轨道半径 1 r、 2 r;反过来,如果知道了两星球运行的轨道半径 1 r、 2 r和相互之间的距离L,也可以求出两星球的质量. 【题 2】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星双星系统在银河系中很普遍, 利用双星系统中两颗恒星的运动特征可推算出它们的总质量 已知某双星系统中两颗恒星围绕它们连线上的某一 固定点分别做匀速圆周运动,周期均为

    6、T,两颗恒星之间的距离为r,试推算这个双星系统的总质量 (引力常 量为G) 【解析】设两星质量分别为 1 m、 2 m,做圆周运动的半径分别为 1 r、 2 r,角速度分别为 1 、 2 ,根据题意可得 12 12 rrr 根据万有引力定律和牛顿第二定律可得 212 11 1 2 m m Gmr r 212 22 2 2 m m Gmr r 联立以上各式解得 2 1 12 m rL mm 1 2 12 m rL mm 根据角速度与周期的关系知 12 2 T 联立式解得: 23 12 2 4r mm GT 透视透视3 3 考查双星透视中的周期问题考查双星透视中的周期问题 在双星问题中,两星球运行

    7、的周期是相等的,可以利用万有引力与向心力之间的关系和引力半径与运行的轨 道半径之间的关系 公众号:中学生上分;精品资料群:902943580 3 22 12 1122 222 44m m Gmrmr LTT , 12 rrL 【题 3】 如图所示, 质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动, 星球A和B两 者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧,引力常数为G (l)求两星球做圆周运动的周期 (2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行 的周期记为 1 T但在近似处理问题时,常常认

    8、为月球是绕地心做圆周运动的,这样算得的运行周期记为 2 T已知 地球和月球的质量分别为 24 5. 98 10kg 和 22 7.35 10kg求 2 T与 1 T两者平方之比 (结果保留三位小数) 【解析】(l)设r为星球A的运动半径,R为星球B的运动半径,星球A和星球B在万有引力作用下都绕O点做匀 速圆周运动, 两星球之间的万有引力提供它们做匀速圆周运动的向心力, 故星球A和星球B的向心力大小相等 根 据题意可知,A、B的中心和O三点始终共线,这表明星球A和星球B具有相同的角速度和周期,则 22 mrMR rRL 联立式解得 m RL mM M rL mM 根据牛顿第二定律和万有引力定律,

    9、对星球A有 2 2 2Mm Gmr TL 联立式解得 3 2 () L T G Mm (2)将地球和月球看成上述星球A和B,设地心与月心之间的距离为L,地球和月球的质量分别为M、m.由 式可得 3 1 2 () L T G Mm 将月球看成绕地心做圆周运动,万有引力提供月球的向心力,则 公众号:中学生上分;精品资料群:902943580 4 2 2 2 2 M m GmL TL 将上式变形得 3 2 2 L T GM 联立式可得 2 T与 1 T两者平方之比为 2 2422 2 24 1 5. 98 107.35 10 1.012 5. 98 10 TMm TM 点评 处理双星问题的关键是掌握

    10、两点:一是万有引力提供双星做匀速圆周运动的向心力;二是各自做匀速圆周 运动的半径之和等于两者之间距离,即 12 rrL 透视透视4 4 考查三星透视中的相关问题考查三星透视中的相关问题 在三星问题中,涉及的是三个星球的运动关系,比较复杂,在分析问题时,首先是需要判断三个星球的位置 关系,是在同一直线上,还是在等边三角形的三个顶点上;然后是需要判断星球的受力情况,求出的合力即为提 供星球做圆周运动的向心力; 最后是利用几何关系求出星球做圆周运动的轨道半径, 利用相关的关系列方程求解, 【题 4】宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们 的引力作用

    11、已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中 央星在同一半径为R的圆轨道上运行; 另一种形式是三颗星位于等边三角形的三个顶点上, 并沿外接于等边三角 形的圆形轨道运行设每个星体的质量均为m. (l)试求第一种形式下,星体运动的线速度和周期 (2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少? 解析(1)第一种形式下,三颗星位于同一直线上,如图所示,以星体A为研究对象,星体A受到星体B、C 两个万有引力的作用, 它们的合力提供星体A做圆周运动的向心力,则 2 1 2 m FG R 2 2 2 (2 ) m FG R 2 12 v FFm R 联立以上三式解得星体运动的线速度 5 4 Gm v R . 根据 2 R T v 可求得星体运动的周期为: 公众号:中学生上分;精品资料群:902943580 5 4 5 R TR Gm . (2)第二种形式下,三颗星体的位置如图所示, 设星体之间的距离为r,则三颗星体做圆周运动的半径为 0 2cos30 r R 由于星体做圆周运动所需要的向心力是由另外两个星体的万有引力的合力提供,即图中的F合,其为 1 F与 2 F的合 力根据平行四边形定则和万有引力定律可知 2 o 2 2cos30 m FG r 合 2 2 4 FmR T 合 联立以上各式解得 1 3 12 5 rR

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题09双星问题-物理核心探秘-高考物理.pdf
    链接地址:https://www.163wenku.com/p-1679512.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库