(高中数学教学论文)反证法在几何问题中的应用-新人教版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(高中数学教学论文)反证法在几何问题中的应用-新人教版.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学教学论文 高中数学 教学 论文 反证法 几何 问题 中的 应用 新人 下载 _其他_数学_高中
- 资源描述:
-
1、高中数学教学精品论文高中数学教学精品论文 反证法在几何问题中的应用反证法在几何问题中的应用 反证法是一种非常重要的数学方法,它在几何的应用极为广泛,在平面几何、立体几何、解析几何都 有应用,本文选择几个有代表性的应用,举例加以介绍。 一、证明几何量之间的关系 例 1:已知:四边形 ABCD 中,E、F 分别是 AD、BC 的中点,)( 2 1 CDABEF。 求证:CDAB/。 证明:假设 AB 不平行于 CD。如图,连结 AC,取 AC 的中点 G,连结 EG、FG。 E、F、G 分别是 AD、BC、AC 的中点, CDGE /,CDGE 2 1 ;ABGF /,ABGF 2 1 。 AB
2、不平行于 CD, GE 和 GF 不共线,GE、GF、EF 组成一个三角形。 EFGFGE 但EFCDABGFGE)( 2 1 与矛盾。 CDAB/ 例 2 : 直 线PO与 平 面相 交 于O, 过 点O在 平 面内 引 直 线OA、OB、OC, POCPOBPOA。 求证:PO。 证明:假设 PO 不垂直平面。 作PH并与平面相交于 H,此时 H、O 不重合,连结 OH。 由 P 作OAPE 于E,OBPF 于 F, 根据三垂线定理可知,OAHE ,OBHF 。 POBPOA,PO 是公共边, POFRtPOERt OFOE 又OHOH OEHRtOFHRt EOHFOH 因此,OH 是A
3、OB的平分线。 同理可证,OH 是AOC的平分线。 但是,OB 和 OC 是两条不重合的直线,OH 不可能同时是AOB和AOC的平分线,产生矛盾。 PO。 例 3:已知 A、B、C、D 是空间的四个点,AB、CD 是异面直线。 求证:AC 和 BD 是异面直线。 证明:假设 AC 和 BD 不是异面直线,那么 AC 和 BD 在同一平面内。 因此,A、C、B、D 四点在同一平面内,这样,AB、CD 就分别有两个点在这个平面内,则 AB、CD 在这 个平面内,即 AB 和 CD 不是异面直线。这与已知条件产生矛盾。 所以,AC 和 BD 是异面直线 上面所举的例子,用直接证法证明都比较困难,尤其
4、是证两条直线是异面直线,常采用反证法。 二、证明“唯一性”问题 在几何中需要证明符合某种条件的点、线、面只有一个时,称为“唯一性”问题。 AB C D EF G a O P A BC E F H 高中数学教学精品论文高中数学教学精品论文 例 3:过平面上的点 A 的直线a,求证:a是唯一的。 证明:假设a不是唯一的,则过 A 至少还有一条直线b,b a、b是相交直线, a、b可以确定一个平面。 设和相交于过点 A 的直线c。 a,b, ca ,cb 。 这样在平面内,过点 A 就有两条直线垂直于c,这与定理产生矛盾。 所以,a是唯一的。 例 4:试证明:在平面上所有通过点)0 ,2(的直线中,
展开阅读全文