(2022高考数学一轮复习(步步高))第四章 §4.6 解三角形.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2022高考数学一轮复习(步步高))第四章 §4.6 解三角形.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高考数学一轮复习步步高 【2022高考数学一轮复习步步高】第四章 §4.6解三角形 2022 高考 数学 一轮 复习 步步高 第四 4.6 三角形 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、4.6解三角形解三角形 考试要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正 弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 1正弦定理、余弦定理 在ABC 中,若角 A,B,C 所对的边分别是 a,b,c,R 为ABC 外接圆半径,则 定理正弦定理余弦定理 内容 (1) a sin A b sin B c sin C2R (2)a2b2c22bccos A; b2c2a22cacos B; c2a2b22abcos C 变形 (3)a2Rsin A,b2Rsin B,c2Rsin C; (4)sin A a 2R,sin B b 2R,si
2、n C c 2R; (5)abcsin Asin Bsin C; (6)asin Bbsin A,bsin Ccsin B,asin C csin A (7)cos Ab 2c2a2 2bc ; cos Bc 2a2b2 2ac ; cos Ca 2b2c2 2ab 2三角形常用面积公式 (1)S1 2ah a(ha表示边 a 上的高) (2)S1 2absin C 1 2acsin B 1 2bcsin A. (3)S1 2r(abc)(r 为三角形内切圆半径) 3测量中的几个有关术语 术语名称术语意义图形表示 仰角与俯角 在目标视线与水平视线(两者在同一铅 垂平面内)所成的角中,目标视线在
3、水平 视线上方的叫做仰角,目标视线在水平 视线下方的叫做俯角 方位角 从某点的指北方向线起按顺时针方向到 目标方向线之间的夹角叫做方位角方 位角的范围是 0B 是 sin Asin B 的充要条件吗? 提示在ABC 中,由 AB 可推出 sin Asin B,由 sin Asin B 也可推出 AB,故 AB 是 sin Asin B 的充要条件 题组一思考辨析 1判断下列结论是否正确(请在括号中打“”或“”) (1)三角形中三边之比等于相应的三个内角之比() (2)当 b2c2a21a, 所以 B45或 B135. 故选 BC. 6在ABC 中,acos Abcos B,则这个三角形的形状为
4、 答案等腰三角形或直角三角形 解析由正弦定理,得 sin Acos Asin Bcos B, 即 sin 2Asin 2B, 所以 2A2B 或 2A2B, 即 AB 或 AB 2, 所以这个三角形为等腰三角形或直角三角形. 题型一 利用正弦、余弦定理解三角形 例 1 在b2 2aca2c2;acos Bbsin A;sin Bcos B 2这三个条件中任选一个, 补充在下面的问题中,并解决该问题 已知ABC 的内角 A,B,C 的对边分别为 a,b,c,A 3,b 2,求ABC 的 面积 解(1)若选择b2 2aca2c2, 由余弦定理得 cos Ba 2c2b2 2ac 2ac 2ac 2
5、 2 , 因为 B(0,),所以 B 4; 由正弦定理 a sin A b sin B, 得 absin A sin B 2sin 3 2 2 3, 因为 A 3,B 4, 所以 C 3 4 5 12, 所以 sin Csin 5 12sin 4 6 sin 4cos 6cos 4sin 6 6 2 4 , 所以 SABC1 2absin C 1 2 3 2 6 2 4 3 3 4 . (2)若选择acos Bbsin A, 则 sin Acos Bsin Bsin A, 因为 sin A0,所以 sin Bcos B, 因为 B(0,),所以 B 4; 由正弦定理 a sin A b sin
6、 B, 得 absin A sin B 2sin 3 2 2 3, 因为 A 3,B 4, 所以 C 3 4 5 12, 所以 sin Csin 5 12sin 4 6 sin 4cos 6cos 4sin 6 6 2 4 , 所以 SABC1 2absin C 1 2 3 2 6 2 4 3 3 4 . (3)若选择sin Bcos B 2, 则2sin B 4 2,所以 sin B 4 1, 因为 B(0,),所以 B 4 4, 5 4 , 所以 B 4 2,所以 B 4; 由正弦定理 a sin A b sin B, 得 absin A sin B 2sin 3 2 2 3, 因为 A
7、3,B 4, 所以 C 3 4 5 12, 所以 sin Csin 5 12sin 4 6 sin 4cos 6cos 4sin 6 6 2 4 , 所以 SABC1 2absin C 1 2 3 2 6 2 4 3 3 4 . 思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素, 基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求 得未知元素 (2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件 化为角的三角函数关系,也可以把已知条件化为三角形边的关系 跟踪训练 1 (1)(2018全国)在ABC
8、中,cos C 2 5 5 ,BC1,AC5,则 AB 等于() A4 2B. 30C. 29D2 5 答案A 解析cos C 2 5 5 , cos C2cos2C 212 5 5 213 5. 在ABC 中,由余弦定理,得 AB2AC2BC22ACBCcos C5212251 3 5 32, AB 324 2. 故选 A. (2)(2020全国)在ABC 中,cos C2 3,AC4,BC3,则 tan B 等于( ) A. 5B2 5C4 5D8 5 答案C 解析由余弦定理得 AB2AC2BC22ACBCcos C42322432 39, 得 AB3,所以 ABBC. 过点 B 作 BD
9、AC,交 AC 于点 D,如图, 则 AD1 2AC2, BD 3222 5, 所以 tanABDAD BD 2 5 2 5 5 , 所以 tanABC 2tanABD 1tan2ABD4 5. 题型二 正弦定理、余弦定理的应用 命题点 1判断三角形的形状 例 2 (1)设ABC 的内角 A,B,C 所对的边分别为 a,b,c,若 bcos Cccos Basin A,则 ABC 的形状为() A锐角三角形B直角三角形 C钝角三角形D不确定 答案B 解析由正弦定理得 sin Bcos Csin Ccos Bsin2A, sin(BC)sin2A, 即 sin(A)sin2A,sin Asin2
10、A. A(0,),sin A0,sin A1, 即 A 2,ABC 为直角三角形 (2)(多选)已知 a,b,c 分别是ABC 三个内角 A,B,C 的对边,下列四个命题中正确的是 () A若 tan Atan Btan C0,则ABC 是锐角三角形 B若 acos Abcos B,则ABC 是等腰三角形 C若 bcos Cccos Bb,则ABC 是等腰三角形 D若 a cos A b cos B c cos C,则ABC 是等边三角形 答案ACD 解析tan Atan Btan Ctan Atan Btan C0, A,B,C 均为锐角,选项 A 正确; 由 acos Abcos B 及正
11、弦定理,可得 sin 2Asin 2B, AB 或 AB 2, ABC 是等腰三角形或直角三角形,选项 B 错; 由 bcos Cccos Bb 及正弦定理, 可知 sin Bcos Csin Ccos Bsin B, sin Asin B, AB,选项 C 正确; 由已知和正弦定理,易知 tan Atan Btan C, 选项 D 正确 命题点 2三角形面积的计算 例 3 (1)(2019全国)ABC 的内角 A,B,C 的对边分别为 a,b,c.若 b6,a2c,B 3, 则ABC 的面积为 答案6 3 解析方法一因为 a2c, b6, B 3, 所以由余弦定理 b 2a2c22accos
12、 B, 得 62(2c)2 c222cccos 3 ,得 c2 3,所以 a4 3,所以ABC 的面积 S1 2 acsin B 1 24 32 3sin 36 3. 方法二因为 a2c,b6,B 3,所以由余弦定理 b 2a2c22accos B,得 62(2c)2c2 22cccos 3,得 c2 3,所以 a4 3,所以 a 2b2c2,所以 A 2,所以ABC 的面 积 S1 22 366 3. (2)在ABC 中,角 A,B,C 的对边分别是 a,b,c,且 A 6,a2,则ABC 面积的最大 值为 答案2 3 解析由余弦定理 a2b2c22bccos A, 得 4b2c22bc 3
13、 2 2bc 3bc, 所以 bc4(2 3), 所以 SABC1 2bcsin A2 3, 故ABC 面积的最大值为 2 3. 思维升华 (1)判断三角形形状的方法 化边:通过因式分解、配方等得出边的相应关系 化角:通过三角恒等变换,得出内角的关系,此时要注意应用 ABC这个结论 (2)三角形面积计算问题要适当选用公式,可以根据正弦定理和余弦定理进行边角互化 跟踪训练 2 (1)在ABC 中,cos2B 2 ac 2c (a,b,c 分别为角 A,B,C 的对边),则ABC 的形 状为() A等边三角形B直角三角形 C等腰三角形或直角三角形D等腰直角三角形 答案B 解析cos2B 2 1co
14、s B 2 ,cos2B 2 ac 2c , (1cos B)cac,acos Bca 2c2b2 2a , 2a2a2c2b2,a2b2c2, ABC 为直角三角形 (2)(2018全国)ABC 的内角 A, B, C 的对边分别为 a, b, c.已知 bsin Ccsin B4asin Bsin C,b2c2a28,则ABC 的面积为 答案 2 3 3 解析由 bsin Ccsin B4asin Bsin C, 得 sin Bsin Csin Csin B4sin Asin Bsin C, 因为 sin Bsin C0,所以 sin A1 2. 因为 b2c2a28,所以 cos Ab
15、2c2a2 2bc 0, 所以 bc8 3 3 , 所以 SABC1 2 8 3 3 1 2 2 3 3 . 题型三 解三角形应用举例 命题点 1测量距离问题 例 4 (2020宁德质检)海洋蓝洞是地球罕见的自然地理现象,被誉为“地球给人类保留宇宙秘 密的最后遗产”,我国拥有世界上已知最深的海洋蓝洞,若要测量如图所示的海洋蓝洞的口 径(即 A,B 两点间的距离),现取两点 C,D,测得 CD80,ADB135,BDCDCA 15,ACB120,则图中海洋蓝洞的口径为 答案80 5 解析由已知得,在ADC 中,ACD15,ADC150,所以DAC15, 由正弦定理得 AC80sin 150 si
16、n 15 40 6 2 4 40( 6 2) 在BCD 中,BDC15,BCD135, 所以DBC30, 由正弦定理 CD sinCBD BC sinBDC, 得 BCCDsinBDC sinCBD 80sin 15 1 2 160sin 1540( 6 2) 在ABC 中,由余弦定理,得 AB21 600(84 3)1 600(84 3)21 600( 6 2)( 6 2)1 21 600161 60041 6002032 000, 解得 AB80 5,故图中海洋蓝洞的口径为 80 5. 命题点 2测量高度问题 例 5 (2020长春质检)海岛算经是中国学者刘徽编撰的一部测量数学著作,现有取
17、自其中 的一个问题:今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表参相直,从前 表却行一百二十三步,人目着地,取望岛峰,与表末参合,从后表却行一百二十七步,人目 着地,取望岛峰,亦与表末参合,问岛高几何?其大意为:如图所示,立两个三丈高的标杆 BC 和 DE,两标杆之间的距离 BD1 000 步,两标杆的底端与海岛的底端 H 在同一直线上, 从前面的标杆 B 处后退 123 步,人眼贴地面,从地上 F 处仰望岛峰,A,C,F 三点共线,从 后面的标杆 D 处后退 127 步,人眼贴地面,从地上 G 处仰望岛峰,A,E,G 三点也共线, 则海岛的高为(注:1 步6 尺,1 里180 丈
18、1 800 尺300 步)() A1 255 步B1 250 步 C1 230 步D1 200 步 答案A 解 析因 为 AHBC , 所 以 BCFHAF , 所 以 BF HF BC AH . 因 为 AHDE , 所 以 DEGHAG,所以DG HG DE AH.又 BCDE,所以 BF HF DG HG,即 123 123HB 127 1271 000HB, 所以 HB30 750 步,又BF HF BC AH, 所以 AH530 750123 123 1 255(步)故选 A. 命题点 3测量角度问题 例 6 已知岛 A 南偏西 38方向,距岛 A 3 海里的 B 处有一艘缉私艇岛
展开阅读全文