(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人教版高中数学公开课精品教案 【新人教版高中数学公开课精品教案】方程的根与函数的零点 教学设计青海 新人 高中数学 公开 精品 教案 方程 函数 零点 教学 设计 青海 下载 _其他_数学_高中
- 资源描述:
-
1、新人教版高中数学优质公开课精品教案及点评资料 第三章函数的应用 3.1函数与方程 3.1.1方程的根与函数的零点 单位:青海昆仑中学姓名:周 XX 一一教学内容分析教学内容分析 本节内容是高中数学人教版必修一,第三章函数的应用,第一节函数与方程第一课 时方程的根与函数的零点; 课本选取探究具体的一元二次方程的根与其对应的二次函数 的图象与 x 轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉 的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般的 化归转化思想,由易到难,这符合学生的认知规律;本节体现的数学思想是: “数形结 合”思想和“转化”思想.本节
2、充分体现了函数图象和性质的应用.因此,把握课本要从 三个方面入手:新旧知识的联系,学生认知规律,数学思想方法. 二、教学目标二、教学目标 3、能利用函数图象和性质判断某些函数的零点个数,及所在区间 4.经历“类比归纳应用”的过程,感悟由具体到抽象的研究方法,培养归纳概 括能力体会从特殊到一般的转化的数学思想。 三、学情分析三、学情分析 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能 力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础其次,学 生对于方程已经有了一定的认知基础,对方程的根并不陌生,这样就使得方程与函数联 系的过度学生容易掌握,但学生对于数
3、形结合的数学思想仍不能胜任,故本节课关键在 于通过图像去突破重难点,学生会表现出不适。而本节的零点存在定理只为零点的存在 提供充分非必要条件,所以定理的逆命题、否命题都不成立,在函数连续性、简单逻辑 1、了解函数零点的概念:能够结合具体方程(如二次方程) ,说明方程的根、函数 的零点、函数图象与x轴的交点三者的关系; 2、理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函 数存在零点的一个充分条件;了解函数零点可能不止一个; 新人教版高中数学优质公开课精品教案及点评资料 用语未学习的情况下,学生对定理的理解常常不够深入这就要求教师引导学生体验各 种成立与不成立的情况,从不同的
4、角度审视定理的条件与适用范围 四、教学策略选择与设计四、教学策略选择与设计 本节课在概念的形成和深化、 定理的概括和应用方面, 都给予自主探究、 辨析实践、 动手画图及交流讨论的机会,只有充分激活了学生的思维,这节课的各环节才能顺利推 进,内容才会丰富充实,方法才会异彩纷呈所以这节课总的设计理念是以学生为主概 念与定理的建立是一个感知、探究的过程,不仅关注知识的掌握,也关注学生的学习过 程,把体验、尝试、发现的机会交给学生,紧扣教材,注重思维、注重过程 五、教学重点及难点五、教学重点及难点 教学难点:教学难点: 对零点存在性定理的准确理解 六、教学过程六、教学过程 (一)导入新课(一)导入新课
5、: 求解下列方程 032 2 xx012 2 xx032 2 xx 设计意图:设计意图:通过具体的一元二次方程求解回忆旧知为新知铺垫。 (二)新知探究: (1)回忆旧知铺垫新回忆旧知铺垫新课 问题 1:二次函数与其所对应方程之间有什么关系? 判别式000 方程 ax 2+bx+c=0 (a0)的根 两个不相 等的实数根x1、 x2 有两个相 等的 实数根x1= x2 没有实数 根 函数 y=ax 2+bx+c (a0)的图象 O x y x1x2 O y xx1 O x y 函数的图两个交点:一个交点:无交点 教学重点:教学重点:了解函数零点概念,掌握函数零点存在性定理 新人教版高中数学优质公
6、开课精品教案及点评资料 y y x y y x 象与x轴的交点(x1,0), (x2,0) (x1,0) 设计意图设计意图:引导学生对初中所学的二次方程进行回忆,同时也想要说明方程的根除 了韦达定理和求根公式和函数的图像存在关系,为后面的零点进行铺垫通过回顾二次函 数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备。 (2 2)辨析讨论)辨析讨论,深化概念深化概念 问题 2:由二次函数与其所对应方程之间存在的关系你能否类比得到函数和方程之 间的关系吗? 设计意图:设计意图:培养学生识图和归纳总结的能力 问题 3:你能将你得到的特殊结论推广到一般的形式的函数吗?并将你所得的结
展开阅读全文