(2021新苏教版)高中数学必修第一册5.4.1第1课时 函数奇偶性的概念ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2021新苏教版)高中数学必修第一册5.4.1第1课时 函数奇偶性的概念ppt课件.ppt》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021新教材 2021 新教材 苏教版 高中数学 必修 一册 5.4 课时 函数 奇偶性 概念 ppt 课件 下载 _必修 第一册_苏教版(2019)_数学_高中
- 资源描述:
-
1、5.4函数的奇偶性 第1课时函数奇偶性的概念 必备知识必备知识自主学习自主学习 导思导思 1.1.函数除了具有单调性外函数除了具有单调性外, ,还有其他性质吗还有其他性质吗? ? 2.2.奇函数、偶函数分别有怎样的对称性奇函数、偶函数分别有怎样的对称性? ? 函数的奇偶性函数的奇偶性 (1)(1)奇偶性奇偶性: : 奇偶性奇偶性偶函数偶函数奇函数奇函数 条件条件设函数设函数y=f(x)y=f(x)的定义域为的定义域为A,A,如果对于任意的如果对于任意的xA,xA,都有都有-xA-xA 前提前提f(-x)=_f(-x)=_f(-x)= _f(-x)= _ 结论结论 函数函数y=f(x)y=f(x
2、)是是 偶函数偶函数 函数函数y=f(x)y=f(x)是是 奇函数奇函数 图象图象 特点特点 关于关于_对称对称关于关于_对称对称 f(x)f(x)-f(x)-f(x) y y轴轴原点原点 (2)(2)本质本质: :奇偶性是函数对称性的表示方法奇偶性是函数对称性的表示方法. . (3)(3)应用应用: :奇偶性是函数的奇偶性是函数的“整体整体”性质性质, ,只有对其定义域内的每一个只有对其定义域内的每一个x,x,都有都有f(-f(- x)=-f(x)(x)=-f(x)(或或f(-x)=f(x),f(-x)=f(x),才能说才能说f(x)f(x)是奇是奇( (偶偶) )函数函数. . 【思考】【
3、思考】 具有奇偶性的函数具有奇偶性的函数, ,其定义域有何特点其定义域有何特点? ? 提示提示: :定义域关于原点对称定义域关于原点对称. . 【基础小测】【基础小测】 1.1.辨析记忆辨析记忆( (对的打对的打“”,”,错的打错的打“”)”) (1) (1) 对于函数对于函数y=f(x),y=f(x),若存在若存在x,x,使使f(-x)=-f(x),f(-x)=-f(x),则函数则函数y=f(x)y=f(x)一定是奇函数一定是奇函数. . ( () ) (2) (2) 若函数的定义域关于原点对称若函数的定义域关于原点对称, ,则这个函数不是奇函数就是偶函数则这个函数不是奇函数就是偶函数. .
4、 ( () ) (3)(3)奇函数的图象一定过奇函数的图象一定过(0,0).(0,0). ( () ) 提示提示: :(1)(1). .奇函数、偶函数的定义都要求对于定义域内的任意奇函数、偶函数的定义都要求对于定义域内的任意x.x. (2)(2). .函数的奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数函数的奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数. . (3)(3). .奇函数的图象不一定过原点奇函数的图象不一定过原点, ,例如函数例如函数y= .y= . 1 x 2.2.下列图象表示的函数具有奇偶性的是下列图象表示的函数具有奇偶性的是 ( () ) 【解析】【解析】选
5、选B.BB.B选项的图象关于选项的图象关于y y轴对称轴对称, ,是偶函数是偶函数, ,其余选项都不具有奇偶性其余选项都不具有奇偶性. . 3.(3.(教材二次开发教材二次开发: :例题改编例题改编) )下列函数为奇函数的是下列函数为奇函数的是( () ) A.y=|x|A.y=|x|B.y=3-xB.y=3-x C.y= C.y= D.y=-xD.y=-x2 2+14+14 3 1 x 【解析】【解析】选选C.AC.A、D D两项两项, ,函数均为偶函数函数均为偶函数,B,B项中函数为非奇非偶函数项中函数为非奇非偶函数, ,而而C C项中项中 函数为奇函数函数为奇函数. . 关键能力关键能力
6、合作学习合作学习 类型一函数奇偶性的判断类型一函数奇偶性的判断( (逻辑推理、数学运算逻辑推理、数学运算) ) 【题组训练】【题组训练】 1.1.函数函数f(x)= f(x)= 的奇偶性是的奇偶性是( () ) A.A.奇函数奇函数B.B.偶函数偶函数 C.C.非奇非偶函数非奇非偶函数D.D.既奇又偶函数既奇又偶函数 22 1xx1 2.2.函数函数f(x)= f(x)= 的奇偶性是的奇偶性是( () ) A.A.奇函数奇函数B.B.偶函数偶函数 C.C.非奇非偶函数非奇非偶函数D.D.既奇又偶函数既奇又偶函数 3.3.判断函数判断函数f(x)=2xf(x)=2x3 3-x-x是否具有奇偶性是
7、否具有奇偶性. . x1,x0 0,x0 x1,x0 , , 【解析】【解析】1.1.选选D.D.由由 得得x x2 2=1,=1,即即x=x=1.1.因此函数的定义域为因此函数的定义域为-1,1,-1,1,因为因为 对任意对任意x-1,1,x-1,1,都有都有-x-1,1,-x-1,1,又又f(1)=f(-1)=-f(-1)=0,f(1)=f(-1)=-f(-1)=0, 所以所以f(x)f(x)既是奇函数又是偶函数既是奇函数又是偶函数. . 2.2.选选A.A.函数函数f(x)f(x)的定义域为的定义域为R,R, 因为对于任意的因为对于任意的xRxR都有都有-xR,-xR,且且 f(-x)=
8、 f(-x)= 即即f(-x)= f(-x)= 于是有于是有f(-x)=-f(x).f(-x)=-f(x).所以所以f(x)f(x)为奇函数为奇函数. . 2 2 1x0 x10 , x1, x0 0, x0 x1, x0 , , , x1,x0 0,x0 x1,x0 , , , 3.3.函数函数f(x)f(x)为奇函数为奇函数. . 理由如下理由如下: :函数函数f(x)f(x)的定义域为的定义域为R,R, 因为对于任意因为对于任意xR,xR,都有都有-xR,-xR,且且f(-x)=2(-x)f(-x)=2(-x)3 3-(-x)=-2x-(-x)=-2x3 3+x=-(2x+x=-(2x3
9、 3-x)=-f(x),-x)=-f(x), 所以函数所以函数f(x)f(x)为奇函数为奇函数. . 【解题策略】【解题策略】 判断函数奇偶性的方法判断函数奇偶性的方法 (1)(1)定义法定义法: :根据函数奇偶性的定义进行判断根据函数奇偶性的定义进行判断. .步骤如下步骤如下: : 判断函数判断函数f(x)f(x)的定义域是否关于原点对称的定义域是否关于原点对称. .若不对称若不对称, ,则函数则函数f(x)f(x)为非奇非偶为非奇非偶 函数函数, ,若对称若对称, ,则进行下一步则进行下一步. . 验证验证.f(-x)=-f(x).f(-x)=-f(x)或或f(-x)=f(x).f(-x)
10、=f(x). 下结论下结论. .若若f(-x)=-f(x),f(-x)=-f(x),则则f(x)f(x)为奇函数为奇函数; ; 若若f(-x)=f(x),f(-x)=f(x),则则f(x)f(x)为偶函数为偶函数; ; 若若f(-x)-f(x),f(-x)-f(x),且且f(-x)f(x),f(-x)f(x),则则f(x)f(x)为非奇非偶函数为非奇非偶函数. . (2)(2)图象法图象法:f(x):f(x)是奇是奇( (偶偶) )函数的等价条件是函数的等价条件是f(x)f(x)的图象关于原点的图象关于原点(y(y轴轴) )对称对称. . 【补偿训练】【补偿训练】 下列函数中是偶函数的有下列函
11、数中是偶函数的有_.(_.(填序号填序号) f(x)=xf(x)=x3 3; ;f(x)=|x|+1;f(x)=|x|+1;f(x)= ;f(x)= ; f(x)=x+ ;f(x)=x+ ; f(x)=xf(x)=x2 2,x-1,2.,x-1,2. 2 1 x 1 x 【解析】【解析】对于对于,f(-x)=-x,f(-x)=-x3 3=-f(x),=-f(x),则为奇函数则为奇函数; ;对于对于,f(-x)=|-,f(-x)=|- x|+1=|x|+1=f(x),x|+1=|x|+1=f(x),则为偶函数则为偶函数; ;对于对于, ,定义域为定义域为x|x0,x|x0,关于原点对称关于原点对
展开阅读全文