(2021新教材)人教A版《高中数学》必修第一册5.2三角函数的概念练习(原卷+解析).zip

收藏

压缩包目录 预览区
  • 全部
    • 5.2三角函数的概念-【新教材】人教A版(2019)高中数学必修第一册练习(原卷+解析)
      • 5.2三角函数的概念(原卷版) .docx--点击预览
      • 5.2三角函数的概念(解析版).docx--点击预览
跳过导航链接。
展开 2021新教材人教A版高中数学必修第一册5.2三角函数的概念练习原卷解析.zip2021新教材人教A版高中数学必修第一册5.2三角函数的概念练习原卷解析.zip
请点击导航文件预览
编号:1633392    类型:共享资源    大小:328.37KB    格式:ZIP    上传时间:2021-08-04
2
文币
资源描述:
5.2 三角函数的概念三角函数的概念 一、单选题 1已知角终边上一点的坐标为,则( ) 02 77 sin,cos 66 ABCD 5 6 7 6 4 3 5 3 2已知是第三象限角,且,则是( ) coscos 22 2 A第一象限角B第二象限角C第三象限角D第四象限角 3已知是第二象限角,为其终边上一点且,则 ,2P x 5 cos 5 x 的值 2sincos sincos ABCD 5 5 2 3 2 3 4 4已知,是关于的方程的两个根,则的值是 sincosx 2 0 xaxaaR a ( ) ABCD 12 122112 5已知实数,满足,则,的大小关 abc lg2 2a 2 logba sincbabc 系是( ) ABCD abcbcaacbbac 6已知,则( ) 0.2 2 tan 5 a 5 log 3b 2 2 logcos 7 c AB bacabc CD cabacb 二、填空题 7若,则_. sin2cos 22 sin 22cos 2 sin4 8化简: 2 1 210 cos10 cos101 cos 170 sin 9已知的面积为,且,则的值 ABC212 3AC 43 1 tantanAB tan A 为_. 三、解答题 10已知角的终边经过点, 12, 5P (1)求的值; sin,cos,tan (2)求的值 3 sin 2 tan()cos() sin() 11已知 10 sincos0 2252 (1)求的值; tan (2)若角满足,求的值. 12 sin 2 13 cos 5.2 三角函数的概念三角函数的概念 一、单选题 1已知角终边上一点的坐标为,则( ) 02 77 sin,cos 66 ABCD 5 6 7 6 4 3 5 3 【答案】C 【解析】根据三角函数的定义求,结合角的范围写出角即可. tan 由诱导公式知, 71 sinsin()sin 6662 , 73 coscos()cos 6662 所以角终边上一点的坐标为, 02 13 (,) 22 故角的终边在第三象限, 所以, tan3 由知, 02 4 3 故选:C 2已知是第三象限角,且,则是( ) coscos 22 2 A第一象限角B第二象限角C第三象限角D第四象限角 【答案】B 【解析】由是第三象限角,知在第二象限或在第四象限,再由, 2 coscos 22 知,由此能判断出所在象限 cos0 2 2 是第三象限角, Q , 180360270360 ,kkkZ , 90180135180 , 2 kkkZ 当是偶数时,设,则,此时 k 2 ,kn nZ 90360135360 , 2 nnnZ 在第二象限; 2 当是奇数时,设,则,此 k21,knnZ 270360315360 , 2 nnnZ 时在第四象限; 2 在第二象限或在第四象限, 2 , coscos 22 cos0 2 在第二象限 2 故选 B 3已知是第二象限角,为其终边上一点且,则 ,2P x 5 cos 5 x 的值 2sincos sincos ABCD 5 5 2 3 2 3 4 【答案】A 【解析】 由题意得,解得 2 5 cos 5 4 xx x 1x 又是第二象限角, 1x tan2 选 A 2sincos2tan14 1 5 sincostan12 1 4已知,是关于的方程的两个根,则的值是 sincosx 2 0 xaxaaR a ( ) ABCD 12 122112 【答案】C 【解析】方程有实根,由此得的范围,然后由韦达定理结合 0 a 可求得 22 sincos1a 由题意,解得或 2 40aa 4a 0a 又, sincosa sincosa ,解得, 2222 sincos(sincos)2sincos21aa 12a 又或 4a 0a 12a 故选:C 5已知实数,满足,则,的大小关 abc lg2 2a 2 logba sincbabc 系是( ) ABCD abcbcaacbbac 【答案】A 【解析】易得,进而由指数函数的性质得到,根据 0lg212blg 1ab 时,可得,从而作出判定. 0,x sinxxbc , 1210,0lg21 , 2 22 loglog 220,1 lg balg , 20 221 lg ab 时, ,即, 0,x sinxxsinbbbc , abc 故选:A. 6已知,则( ) 0.2 2 tan 5 a 5 log 3b 2 2 logcos 7 c AB bacabc CD cabacb 【答案】B 【解析】先确定和的范围,然后利用指数函数和对数函数性质把 2 tan 5 2 cos 7 与 0,1 比较后可得 , ,a b c 因为,所以, 2 254 2 tan1 5 2 0cos1 7 , 0.2 2 tan1 5 a 5 0log 31b 2 2 logcos0 7 c 所以. abc 故选:B 二、填空题 7若,则_. sin2cos 22 sin 22cos 2 sin4 【答案】 1 12 【解析】由已知条件求得的值,进而利用二倍角的正切公式求出,再利 tantan2 用二倍角公式结合弦化切的思想可求得所求代数式的值. ,则. sin2costan2 2 2tan4 tan2 1tan3 2222222 sin 22cos 2sin 22cos 2sin 22cos 2tan 22 sin4sin42sin2 cos22tan2 . 2 4 2 13 412 2 3 故答案为:. 1 12 8化简: 2 1 210 cos10 cos101 cos 170 sin 【答案】1 【解析】把原式的分子中的“1”变为,则根号里的式子就写出了完 22 sin 10cos 10 全平方式,根据公式进行化简后,判断与的大小即可化简;分母 2 aa 10sin cos10 根据同角三角函数间的平方关系把根号里的式子变形再利用公式进行化简后, 2 aa 利用诱导公式变形,最后得到分子分母相等,约分即可得到值. 2 1 210 cos10 cos101 cos 170 sin 22 2 sin 10210 cos10cos 10 cos10170 sin sin 10cos10 cos10170 sin sin cos1010 cos1018010 sin sin . cos1010 1 cos1010 sin sin 【点睛】 三角函数式的化简要遵循“三看”原则: (1)一看“角” ,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用 公式; (2)二看“函数名称” ,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征” ,分析结构特征,找到变形的方向 9已知的面积为,且,则的值 ABC212 3AC 43 1 tantanAB tan A 为_. 【答案】 21 【解析】将正切化为弦,结合边角互化思想得出,然后利用三角 sincos 3 bAA c 形的面积公式结合三角恒等变换思想得出的值,并利用弦化切的 2 sinsincosAAA 思想可求出的值. tan A 设的内角、的对边分别为、,则, ABCA BCabc2 3b , 434cos3cos4cossin3sincos 1 tantansinsinsinsin ABABAB ABABAB , 4cossin3sincossinsinABABAB , sinsincossin3 sincoscossin3sin3sinABABABABABC 由边角互化思想得, sincos3bAAc sincos 3 bAA c 的面积为 ABC 112 3 sin2 3sincossin 223 ABC SbcAAAA , 2 2 sinsincos21AAA 2 21 sinsincos 2 AAA 即, 2 22 22 22222 22 sinsincos 21sinsincostantan coscos sincos2sincostan1 coscos AAA AAAAA AA AAAAA AA 整理得,解得. 2 21 tan2tan210AAtan21A 故答案为:. 21 三、解答题 10已知角的终边经过点, 12, 5P (1)求的值; sin,cos,tan (2)求的值 3 sin 2 tan()cos() sin() 【答案】 (1),;(2). 5 sin 13 12 cos 13 5 tan 12 131 65 【解析】 (1)根据三角函数第二定义即可求值; (2)根据诱导公式化简可得, 3 sin cos2 tan()cos()sin sin()sin 再把(1)中的三角函数值代入即得答案. (1)角的终边经过点, 12, 5P , 22 55 sin 13 12( 5) , 22 1212 cos 13 12( 5) 55 tan 1212 (2) 3 sin cos2 tan()cos()( tan)( cos ) sin()sin 12 cos5125 13 sin 5 sin13513 13 131 65 11已知 10 sincos0 2252 (1)求的值; tan (2)若角满足,求的值. 12 sin 2 13 cos 【答案】 (1)(2)或 3 tan 4 56 65 16 65 【解析】 (1)把已知等式两边平方,即可求得,进一步得到,则可 sincostan 求; (2)由,得,利用 12 sin(2) 13 5 cos(2) 13 ,分类展开两角差的余弦求解. cos()cos(2) 解:(1)将两边平方, 10 sincos 225 可得, 2 12sincos 225 所以, 3 sin 5 又, 0 2 所以, 4 cos 5 故, sin3 tan cos4 (2)由, 12 sin 2 13 得, 5 cos 2 13 又因为, coscos2cos 2cossin 2sin 若, 5 cos 2 13 则, 5412316 cos() 13513565 若, 5 cos 2 13 则 5412356 cos() 13513565
展开阅读全文
【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(2021新教材)人教A版《高中数学》必修第一册5.2三角函数的概念练习(原卷+解析).zip》由用户(alice)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
关 键 词:
2021新教材 高中数学 新教材 人教 必修 一册 三角函数 概念 练习 解析
提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:(2021新教材)人教A版《高中数学》必修第一册5.2三角函数的概念练习(原卷+解析).zip
链接地址:https://www.163wenku.com/p-1633392.html

Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


侵权投诉QQ:3464097650  资料上传QQ:3464097650
   


【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

163文库