(2021新教材)人教A版《高中数学》必修第一册3.2.4 抽象函数单调性及奇偶性 讲义(学生版+教师版).zip
抽象函数的单调性抽象函数的单调性 一类:一次函数型一类:一次函数型 函数满足:函数满足: 或或 ()( )( )f abf af bk()( )( )f abf af bk 1.函数f(x)对任意xyR,总有f(x)+f(y)=f(x+y),且当x0时, 0. 1 2 x ( )f x (1)求;(1)f (2) 判断函数的单调性,并证明.( )f x 二类:对数函数型二类:对数函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b( )( )( ) a ff af b b 1.函数对于x0有意义,且满足条件减函数。( )f x(2)1,()( )( ),( )ff xyf xf yf x是 (1)证明:;(1)0f (2)若成立,求x的取值范围。( )(3)2f xf x 2.定义在上的函数满足对任意恒有,且不恒为0。R)(xfRyx、)()()(yfxfxyf)(xf (1).求和的值;) 1 (f) 1(f (2).试判断的奇偶性,并加以证明;)(xf (3).若时为增函数,求满足不等式的的取值范围.0 x)(xf0)2() 1(xfxfx 3.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.( )f x,a bR()( )( )f a baf bbf a (1)求的值;(0),(1)ff (2)判断的奇偶性,并证明你的结论;( )f x 4.定义在,上的函数,满足 ,且当 时,), 0( )(xf)()()(nfmfmnf)0,(nm1x .0)(xf (1).求的值;) 1 (f (2).求证:;)()()(nfmf n m f (3).求证:在上是增函数;)(xf), 0( (4).若,解不等式 . 1)2(f2)2()2(xfxf 三类:指数函数型三类:指数函数型 函数满足:函数满足: 或或 ()( )( )f abf af b ( ) () ( ) f a f ab f b 1.已知函数的定义域为R,对任意实数都有,( )f x,m n()( )( )f mnf mf n 且当时,. (1)证明:; (2)证明:在R上单调递减.0 x 0( )1f x(0)1,0fx且时, f (x)1( )f x 2.定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的xR,恒有f(x)0; (3)证明:f(x)是R上的增函数; (4)若f(x)f(2x-x2)1,求x的取值范围。 四类:幂函数型四类:幂函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b ( ) ( ) ( ) af a f bf b 1.已知函数满足:对任意,都有,( )f x, x yR()( )( )f xyf xf y 时,.( 1)1,(27)9,01ffx且当( )0,1f x (I)判断的奇偶性;( )f x (II)判断在上的单调性,并证明;( )f x0, (III)若,且,求的取值范围。0a 3 (1)9f aa 五类:其他类数函数型五类:其他类数函数型 1.已知定义在(0,+)上的函数满足(1)时,;(2);(3)对任意的)(xf1x0)(xf1) 2 1 (f ,都有,求不等式的解集.), 0(,yx)()()(yfxfxyf2)5()(xfxf 2.已知函数. 52)( 2 axxxf) 1( a (1).若函数的定义域和值域均为,求实数的值;)(xf, 1 aa (2).若在区间上是减函数,且对任意的,总有,)(xf2 ,( 1, 1 , 21 axx4)()( 21 xfxf 求实数的值.a 3.已知函数=是定义在(1,1)上的奇函数,且)(xf 2 1x bax f 1 2 5 2 确定函数的解析式)(xf 用定义证明函数在上是增函数)(xf) 1 , 1( 解不等式 . 0)() 1(tftf 4.函数的定义域为R,并满足以下条件:对任意,有0;对任意,( )f xxR( )f x, x yR 有;.() ( )yf xyf x 1 ( )1 3 f (1)求的值; (2)求证: 在R上是单调减函数.(0)f( )f x 抽象函数的单调性抽象函数的单调性 一类:一次函数型一类:一次函数型 函数满足:函数满足: 或或 ()( )( )f abf af bk()( )( )f abf af bk 1.函数f(x)对任意xyR,总有f(x)+f(y)=f(x+y),且当x0时, x2,则f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2) x1x2,x1-x20. 又x0时,f(x)0. f(x1-x2)0. 即f(x1)-f(x2)0. 1 2 x ( )f x (1)求;(1)f (2) 判断函数的单调性,并证明.( )f x 4.(1)解:令,则 1 2 mn 1111 ()2 ( ) 2222 ff 1 (1) 2 f (2)任取,则 1212 ,x xRxx且 212111211121 11 ()()()()()()()() 22 f xf xfxxxf xf xxf xf xf xx = 21 1 ()0 2 f xx 12 ()()f xf x 函数是R上的单调增函数.( )f x 二类:对数函数型二类:对数函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b( )( )( ) a ff af b b 1.函数对于x0有意义,且满足条件减函数。( )f x(2)1,()( )( ),( )ff xyf xf yf x是 (1)证明:;(1)0f (2)若成立,求x的取值范围。( )(3)2f xf x 1.(1)证明:令,则,故1xy(1 1)(1)(1)fff(1)0f (2),令,则, (2)1f2xy(2 2)(2)(2)2fff (4)2f( )(3)2f xf x 2 (3)(4)(3 )(4)f x xff xxf ,函数对于x0有意义,是减函数;, ( )f x( )f x 43 03 0 2 xx x x 43x 成立的x的取值范围是。( )(3)2f xf x34x 2.定义在上的函数满足对任意恒有,且不恒为0。R)(xfRyx、)()()(yfxfxyf)(xf (1).求和的值;) 1 (f) 1(f (2).试判断的奇偶性,并加以证明;)(xf (3).若时为增函数,求满足不等式的的取值范围.0 x)(xf0)2() 1(xfxfx 2.(1). 令 ,得, 1 yx) 1 () 1 () 1 (fff0) 1 ( f 令 ,得 , . 1 yx) 1() 1() 1 (fff0) 1( f (2).令 ,由 ,得 ,1y)()()(yfxfxyf) 1()()(fxfxf 又 ,又不恒为0, 为偶函数。0) 1( f)()(xfxf)(xf)(xf (3).由 ,知 ,又由(2)知 ,0)2() 1(xfxf)2() 1(xfxf)()(xfxf ,又 在上为增函数,)2()1(xfxf)(xf), 0 xx21 ,故的取值集合为 . 22 )2() 1(xx 2 1 xx 2 1 xx 3.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.( )f x,a bR()( )( )f a baf bbf a (1)求的值;(0),(1)ff (2)判断的奇偶性,并证明你的结论;( )f x 3.(1)解:令,则0ab(0)0f 令,则1ab(1)2 (1)(1)0fff (2)证明:令,则,1ab (1)2 ( 1)ff(1)0f( 1)0f 令,则,1ax b ()( 1)( )( )fxxff xf x 是奇函数。( )f x 4.定义在,上的函数,满足 ,且当 时,), 0( )(xf)()()(nfmfmnf)0,(nm1x .0)(xf (1).求的值;) 1 (f (2).求证:;)()()(nfmf n m f (3).求证:在上是增函数;)(xf), 0( (4).若,解不等式 . 1)2(f2)2()2(xfxf 4.(1).令 ,由条件得 。 (2).,即 .)()()()(nf n m fn n m fmf)()()(nfmf n m f (3).任取,且,则 ,由(2)得,), 0(, 21 xx 21 xx 1 1 2 x x 0)()()( 1 2 12 x x fxfxf 即 , 在 上是增函数。)()( 12 xfxf)(xf), 0( (4).由于, 1)2(f)4()2()2(2fff , , 2)2()2(xfxf)4()2()2(fxfxf)8()2(xfxf 又在 上是增函数, ,解得 ,)(xf), 0( 0 82 x xx 7 2 0 x 故不等式 的解集为 .2)2()2(xfxf 7 2 0 xx 三类:指数函数型三类:指数函数型 函数满足:函数满足: 或或 ()( )( )f abf af b ( ) () ( ) f a f ab f b 1.已知函数的定义域为R,对任意实数都有,( )f x,m n()( )( )f mnf mf n 且当时,. (1)证明:; (2)证明:在R上单调递减0 x 0( )1f x(0)1,0fx且时, f (x)1( )f x . 1.解: (1)证明:令,则0,1mn(0 1)(0)(1)fff 当时,,故,当 时,0 x 0( )1f x(1)0f(0)1f0 x 0( )1f x 当时,则0 x 0 x (0)1 ()()( )( )1 ()() f fxxfxf xf x fxfx (2)证明: 任取,则 1212 ,x xRxx且 2121112111 ()()()()()()()f xf xfxxxf xf xxf xf x 211 () 1 ()f xxf x ,故0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的xR,恒有f(x)0; (3)证明:f(x)是R上的增函数; (4)若f(x)f(2x-x2)1,求x的取值范围。 2.解:(1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1 (2)令a=x,b=-x则 f(0)=f(x)f(-x) )( 1 )( xf xf 由已知x0时,f(x)10,当x0,f(-x)0 0 )( 1 )( xf xf又x=0时,f(0)=10,对任意xR,f(x)0 (3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 1)()()( )( )( 1212 1 2 xxfxfxf xf xf , f(x2)f(x1) f(x)在R上是增函数 (4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增 由f(3x-x2)f(0)得:3x-x20 0 x0;对任意,( )f xxR( )f x, x yR 有;.() ( )yf xyf x 1 ( )1 3 f (1)求的值; (2)求证: 在R上是单调减函数.(0)f( )f x 4.(1)解: 对任意,有0, 令xR( )f x0,2xy 得, 2 (0) (0)(0)1fff (2)任取任取,则令,故 1212 ,x xRxx且 1122 11 , 33 xp xp 12 pp 函数的定义域为R,并满足以下条件:对任意,有0;对( )f xxR( )f x 任意,有;, x yR() ( )yf xyf x 1 ( )1 3 f 12 1212 1111 ()()()() ( ) ( ) 3333 pp f xf xfpfpff0 12 ()()f xf x 函数是R上的单调增函数.( )f x
收藏
- 资源描述:
-
抽象函数的单调性抽象函数的单调性 一类:一次函数型一类:一次函数型 函数满足:函数满足: 或或 ()( )( )f abf af bk()( )( )f abf af bk 1.函数f(x)对任意xyR,总有f(x)+f(y)=f(x+y),且当x0时, 0. 1 2 x ( )f x (1)求;(1)f (2) 判断函数的单调性,并证明.( )f x 二类:对数函数型二类:对数函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b( )( )( ) a ff af b b 1.函数对于x0有意义,且满足条件减函数。( )f x(2)1,()( )( ),( )ff xyf xf yf x是 (1)证明:;(1)0f (2)若成立,求x的取值范围。( )(3)2f xf x 2.定义在上的函数满足对任意恒有,且不恒为0。R)(xfRyx、)()()(yfxfxyf)(xf (1).求和的值;) 1 (f) 1(f (2).试判断的奇偶性,并加以证明;)(xf (3).若时为增函数,求满足不等式的的取值范围.0 x)(xf0)2() 1(xfxfx 3.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.( )f x,a bR()( )( )f a baf bbf a (1)求的值;(0),(1)ff (2)判断的奇偶性,并证明你的结论;( )f x 4.定义在,上的函数,满足 ,且当 时,), 0( )(xf)()()(nfmfmnf)0,(nm1x .0)(xf (1).求的值;) 1 (f (2).求证:;)()()(nfmf n m f (3).求证:在上是增函数;)(xf), 0( (4).若,解不等式 . 1)2(f2)2()2(xfxf 三类:指数函数型三类:指数函数型 函数满足:函数满足: 或或 ()( )( )f abf af b ( ) () ( ) f a f ab f b 1.已知函数的定义域为R,对任意实数都有,( )f x,m n()( )( )f mnf mf n 且当时,. (1)证明:; (2)证明:在R上单调递减.0 x 0( )1f x(0)1,0fx且时, f (x)1( )f x 2.定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的xR,恒有f(x)0; (3)证明:f(x)是R上的增函数; (4)若f(x)f(2x-x2)1,求x的取值范围。 四类:幂函数型四类:幂函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b ( ) ( ) ( ) af a f bf b 1.已知函数满足:对任意,都有,( )f x, x yR()( )( )f xyf xf y 时,.( 1)1,(27)9,01ffx且当( )0,1f x (I)判断的奇偶性;( )f x (II)判断在上的单调性,并证明;( )f x0, (III)若,且,求的取值范围。0a 3 (1)9f aa 五类:其他类数函数型五类:其他类数函数型 1.已知定义在(0,+)上的函数满足(1)时,;(2);(3)对任意的)(xf1x0)(xf1) 2 1 (f ,都有,求不等式的解集.), 0(,yx)()()(yfxfxyf2)5()(xfxf 2.已知函数. 52)( 2 axxxf) 1( a (1).若函数的定义域和值域均为,求实数的值;)(xf, 1 aa (2).若在区间上是减函数,且对任意的,总有,)(xf2 ,( 1, 1 , 21 axx4)()( 21 xfxf 求实数的值.a 3.已知函数=是定义在(1,1)上的奇函数,且)(xf 2 1x bax f 1 2 5 2 确定函数的解析式)(xf 用定义证明函数在上是增函数)(xf) 1 , 1( 解不等式 . 0)() 1(tftf 4.函数的定义域为R,并满足以下条件:对任意,有0;对任意,( )f xxR( )f x, x yR 有;.() ( )yf xyf x 1 ( )1 3 f (1)求的值; (2)求证: 在R上是单调减函数.(0)f( )f x 抽象函数的单调性抽象函数的单调性 一类:一次函数型一类:一次函数型 函数满足:函数满足: 或或 ()( )( )f abf af bk()( )( )f abf af bk 1.函数f(x)对任意xyR,总有f(x)+f(y)=f(x+y),且当x0时, x2,则f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2) x1x2,x1-x20. 又x0时,f(x)0. f(x1-x2)0. 即f(x1)-f(x2)0. 1 2 x ( )f x (1)求;(1)f (2) 判断函数的单调性,并证明.( )f x 4.(1)解:令,则 1 2 mn 1111 ()2 ( ) 2222 ff 1 (1) 2 f (2)任取,则 1212 ,x xRxx且 212111211121 11 ()()()()()()()() 22 f xf xfxxxf xf xxf xf xf xx = 21 1 ()0 2 f xx 12 ()()f xf x 函数是R上的单调增函数.( )f x 二类:对数函数型二类:对数函数型 函数满足:函数满足: 或或 ()( )( )f a bf af b( )( )( ) a ff af b b 1.函数对于x0有意义,且满足条件减函数。( )f x(2)1,()( )( ),( )ff xyf xf yf x是 (1)证明:;(1)0f (2)若成立,求x的取值范围。( )(3)2f xf x 1.(1)证明:令,则,故1xy(1 1)(1)(1)fff(1)0f (2),令,则, (2)1f2xy(2 2)(2)(2)2fff (4)2f( )(3)2f xf x 2 (3)(4)(3 )(4)f x xff xxf ,函数对于x0有意义,是减函数;, ( )f x( )f x 43 03 0 2 xx x x 43x 成立的x的取值范围是。( )(3)2f xf x34x 2.定义在上的函数满足对任意恒有,且不恒为0。R)(xfRyx、)()()(yfxfxyf)(xf (1).求和的值;) 1 (f) 1(f (2).试判断的奇偶性,并加以证明;)(xf (3).若时为增函数,求满足不等式的的取值范围.0 x)(xf0)2() 1(xfxfx 2.(1). 令 ,得, 1 yx) 1 () 1 () 1 (fff0) 1 ( f 令 ,得 , . 1 yx) 1() 1() 1 (fff0) 1( f (2).令 ,由 ,得 ,1y)()()(yfxfxyf) 1()()(fxfxf 又 ,又不恒为0, 为偶函数。0) 1( f)()(xfxf)(xf)(xf (3).由 ,知 ,又由(2)知 ,0)2() 1(xfxf)2() 1(xfxf)()(xfxf ,又 在上为增函数,)2()1(xfxf)(xf), 0 xx21 ,故的取值集合为 . 22 )2() 1(xx 2 1 xx 2 1 xx 3.已知是定义在R上的不恒为零的函数,且对于任意的都满足:.( )f x,a bR()( )( )f a baf bbf a (1)求的值;(0),(1)ff (2)判断的奇偶性,并证明你的结论;( )f x 3.(1)解:令,则0ab(0)0f 令,则1ab(1)2 (1)(1)0fff (2)证明:令,则,1ab (1)2 ( 1)ff(1)0f( 1)0f 令,则,1ax b ()( 1)( )( )fxxff xf x 是奇函数。( )f x 4.定义在,上的函数,满足 ,且当 时,), 0( )(xf)()()(nfmfmnf)0,(nm1x .0)(xf (1).求的值;) 1 (f (2).求证:;)()()(nfmf n m f (3).求证:在上是增函数;)(xf), 0( (4).若,解不等式 . 1)2(f2)2()2(xfxf 4.(1).令 ,由条件得 。 (2).,即 .)()()()(nf n m fn n m fmf)()()(nfmf n m f (3).任取,且,则 ,由(2)得,), 0(, 21 xx 21 xx 1 1 2 x x 0)()()( 1 2 12 x x fxfxf 即 , 在 上是增函数。)()( 12 xfxf)(xf), 0( (4).由于, 1)2(f)4()2()2(2fff , , 2)2()2(xfxf)4()2()2(fxfxf)8()2(xfxf 又在 上是增函数, ,解得 ,)(xf), 0( 0 82 x xx 7 2 0 x 故不等式 的解集为 .2)2()2(xfxf 7 2 0 xx 三类:指数函数型三类:指数函数型 函数满足:函数满足: 或或 ()( )( )f abf af b ( ) () ( ) f a f ab f b 1.已知函数的定义域为R,对任意实数都有,( )f x,m n()( )( )f mnf mf n 且当时,. (1)证明:; (2)证明:在R上单调递减0 x 0( )1f x(0)1,0fx且时, f (x)1( )f x . 1.解: (1)证明:令,则0,1mn(0 1)(0)(1)fff 当时,,故,当 时,0 x 0( )1f x(1)0f(0)1f0 x 0( )1f x 当时,则0 x 0 x (0)1 ()()( )( )1 ()() f fxxfxf xf x fxfx (2)证明: 任取,则 1212 ,x xRxx且 2121112111 ()()()()()()()f xf xfxxxf xf xxf xf x 211 () 1 ()f xxf x ,故0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的xR,恒有f(x)0; (3)证明:f(x)是R上的增函数; (4)若f(x)f(2x-x2)1,求x的取值范围。 2.解:(1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1 (2)令a=x,b=-x则 f(0)=f(x)f(-x) )( 1 )( xf xf 由已知x0时,f(x)10,当x0,f(-x)0 0 )( 1 )( xf xf又x=0时,f(0)=10,对任意xR,f(x)0 (3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 1)()()( )( )( 1212 1 2 xxfxfxf xf xf , f(x2)f(x1) f(x)在R上是增函数 (4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增 由f(3x-x2)f(0)得:3x-x20 0 x0;对任意,( )f xxR( )f x, x yR 有;.() ( )yf xyf x 1 ( )1 3 f (1)求的值; (2)求证: 在R上是单调减函数.(0)f( )f x 4.(1)解: 对任意,有0, 令xR( )f x0,2xy 得, 2 (0) (0)(0)1fff (2)任取任取,则令,故 1212 ,x xRxx且 1122 11 , 33 xp xp 12 pp 函数的定义域为R,并满足以下条件:对任意,有0;对( )f xxR( )f x 任意,有;, x yR() ( )yf xyf x 1 ( )1 3 f 12 1212 1111 ()()()() ( ) ( ) 3333 pp f xf xfpfpff0 12 ()()f xf x 函数是R上的单调增函数.( )f x
展开阅读全文