2021年全国统一新高考数学试卷(浙江卷).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年全国统一新高考数学试卷(浙江卷).doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 全国 统一 新高 数学试卷 浙江 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、2021 年浙江省高考数学试卷 一、选择题:本大题共本大题共 1010 小题小题,每小题每小题 4 4 分分,共共 4040 分分。在每小题给出的四个选项中在每小题给出的四个选项中,只有只有 一项是符合题目要求的。一项是符合题目要求的。 1设集合 |1Ax x, | 12Bxx ,则(AB ) A |1x x B |1x xC | 11xx D |12xx 2已知aR,(1)3(ai ii i为虚数单位) ,则(a ) A1B1C3D3 3已知非零向量a ,b ,c ,则“a cb c ”是“ab ”的() A充分不必要条件B必要不充分条件 C充分必要条件D既不充分也不必要条件 4某几何体的三
2、视图如图所示(单位:)cm,则该几何体的体积(单位: 3) cm是() A 3 2 B3C 3 2 2 D3 2 5若实数x,y满足约束条件 1 0 0 231 0 x xy xy ,则 1 2 zxy的最小值是() A2B 3 2 C 1 2 D 1 10 6如图,己知正方体 1111 ABCDABC D,M,N分别是 1 AD, 1 D B的中点,则() A直线 1 AD与直线 1 D B垂直,直线/ /MN平面ABCD B直线 1 AD与直线 1 D B平行,直线MN 平面 11 BDD B C直线AD与直线 1 D B相交,直线/ /MN平面ABCD D直线 1 AD与直线 1 D B
3、异面,直线MN 平面 11 BDD B 7已知函数 2 1 ( ) 4 f xx,( )sing xx,则图象为如图的函数可能是() A 1 ( )( ) 4 yf xg xB 1 ( )( ) 4 yf xg x C( ) ( )yf x g xD ( ) ( ) g x y f x 9已知a,bR,0ab ,函数 2 ( )()f xaxb xR若()f st,( )f s,()f st成等比 数列,则平面上点( , )s t的轨迹是() A直线和圆B直线和椭圆C直线和双曲线D直线和抛物线 10 已知数列 n a满足 1 1a , 1 (*) 1 n n n a anN a 记数列 n a
4、的前n项和为 n S, 则() A 100 1 3 2 SB 100 34SC 100 9 4 2 SD 100 9 5 2 S 二、填空题:本大题共本大题共 7 7 小题,多空题每题小题,多空题每题 6 6 分,单空题每题分,单空题每题 4 4 分,共分,共 3636 分。分。 11我国古代数学家赵爽用弦图给出了勾股定理的证明弦图是由四个全等的直角三角形 和中间的一个小正方形拼成的一个大正方形(如图所示) 若直角三角形直角边的长分别为 3,4,记大正方形的面积为 1 S,小正方形的面积为 2 S,则 1 2 S S 12已知aR,函数 2 4,2, ( ) |3|,2 xx f x xa x
5、 若( ( 6)3f f,则a 13 已知多项式 34432 1234 (1)(1)xxxa xa xa xa, 则 1 a ; 234 aaa 14在ABC中,60B,2AB ,M是BC的中点,2 3AM ,则AC ; cosMAC 15袋中有 4 个红球,m个黄球,n个绿球现从中任取两个球,记取出的红球数为, 若取出的两个球都是红球的概率为 1 6 ,一红一黄的概率为 1 3 ,则mn,( )E 16已知椭圆 22 22 1(0) xy ab ab ,焦点 1( ,0)Fc, 2( F c,0)(0)c 若过 1 F的直线和圆 222 1 () 2 xcyc相切,与椭圆的第一象限交于点P,
6、且 2 PFx轴,则该直线的斜率 是,椭圆的离心率是 三、解答题:本大题共本大题共 5 5 小题,共小题,共 7474 分。解答应写出文字说明、证明过程或演算步骤。分。解答应写出文字说明、证明过程或演算步骤。 18 (14 分)设函数( )sincos ()f xxx xR ()求函数 2 () 2 yf x 的最小正周期; ()求函数( ) () 4 yf x f x 在0, 2 上的最大值 19(15 分) 如图, 在四棱锥PABCD中, 底面ABCD是平行四边形,120ABC,1AB , 4BC ,15PA ,M,N分别为BC,PC的中点,PDDC,PMMD ()证明:ABPM; ()求
7、直线AN与平面PDM所成角的正弦值 20 (15 分)已知数列 n a的前n项和为 n S, 1 9 4 a ,且 1 439(*) nn SSnN ()求数列 n a的通项公式; ()设数列 n b满足3(4)0(*) nn bnanN,记 n b的前n项和为 n T若 nn Tb对任 意*nN恒成立, 求实数的取值范围 2021 年浙江省高考数学试卷 参考答案与试题解析 一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1设集合 |1Ax x, | 12Bxx ,则(AB ) A |1x x B |1x xC | 11x
8、x D |12xx 【思路分析】直接利用交集的定义求解即可 【解析】 :因为集合 |1Ax x, | 12Bxx , 所以 |12ABxx 故选:D 【归纳总结】 本题考查了集合交集的运算, 解题的关键是掌握集合交集的定义, 属于基础题 2已知aR,(1)3(ai ii i为虚数单位) ,则(a ) A1B1C3D3 【思路分析】利用复数相等的定义求解即可 【解析】 :因为(1)3ai ii,即3aii , 由复数相等的定义可得,3a ,即3a 故选:C 【归纳总结】本题考查了复数相等定义的理解和应用,属于基础题 3已知非零向量a ,b ,c ,则“a cb c ”是“ab ”的() A充分不
9、必要条件B必要不充分条件 C充分必要条件D既不充分也不必要条件 【思路分析】分别从充分性和必要性进行判断,由充分条件与必要条件的定义,即可得到答 案 【解析】 :由ab ,可得0ab , 则()0abc ,即a bb c , 所以ab 可以推出a bb c , 故“a cb c ”是“ab ”的必要条件 由a cb c 可得 0abc , 由于向量a ,b ,c 是非零向量, 所以 0abc 推不出ab , 综上所述, “a cb c ”是“ab ”的必要不充分条件故选:B 【归纳总结】 本题考查了充分条件与必要条件的判断, 解题的关键是掌握平面向量的基本概 念和基本运算,属于基础题 4某几何
10、体的三视图如图所示(单位:)cm,则该几何体的体积(单位: 3) cm是() A 3 2 B3C 3 2 2 D3 2 【思路分析】由三视图还原原几何体,可知该几何体为直四棱柱,底面四边形ABCD为等 腰梯形,由已知三视图求得对应的量,再由棱柱体积公式求解 【解析】 :由三视图还原原几何体如图, 该几何体为直四棱柱,底面四边形ABCD为等腰梯形, 且2 2AB ,2CD , 1 1AA ,等腰梯形的高为 22 2 22 , 则该几何体的体积 123 ( 22 2)1 222 V 故选:A 【归纳总结】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题 5若实数x,y满足约束条件
11、 1 0 0 231 0 x xy xy ,则 1 2 zxy的最小值是() A2B 3 2 C 1 2 D 1 10 【思路分析】思路一:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合 得到最优解,把最优解的坐标代入目标函数得答案 思路二:.由于可行域是三角形区域,所以可求出三角形三个顶点坐标代入目标函数z中, 其中最小的z值就是本题答案。 【解析】 :解法一:由约束条件作出可行域如图, 联立 10 2310 x xy ,解得( 1,1)A , 化目标函数 1 2 zxy为22yxz,由图可知,当直线22yxz过A时, 直线在y轴上的截距最大,z有最小值为 13 11 22 故
12、选:B 解法二: (李健老师补解)三角形可行域的三个顶点坐标由方程组 10 0 x xy , 10 2310 x xy , 0 2310 xy xy , 即 得 三 个 顶 点1, 1 ,1,1, 1 1 , 5 5 , 所 以 1 11 1( 1) 22 z , 2 13 11 22 z , 2 1111 52510 z ,则z最小值为 3 2 故选: B 【归纳总结】本题考查简单的线性规划,考查数形结合思想,是中档题 6如图,己知正方体 1111 ABCDABC D,M,N分别是 1 AD, 1 D B的中点,则() A直线 1 AD与直线 1 D B垂直,直线/ /MN平面ABCD B直
13、线 1 AD与直线 1 D B平行,直线MN 平面 11 BDD B C直线AD与直线 1 D B相交,直线/ /MN平面ABCD D直线 1 AD与直线 1 D B异面,直线MN 平面 11 BDD B 【思路分析】通过证明直线 1 AD 平面 1 ABD,MN是 1 ABD的中位线,可判断A;根据异 面直线的判断可知 1 AD与直线 1 D B是异面直线,可判断B;根据异面直线的判断可知直线 AD与直线 1 D B是异面直线,可判断C;由/ /MNAB,可知MN不与平面 11 BDD B垂直,可 判断D 【解析】 :连接 1 AD,如图: 由正方体可知 11 ADAD, 1 A DAB,
14、1 AD平面 1 ABD, 11 ADD B,由题意知MN为 1 D AB的中位线,/ /MNAB, 又AB 平面ABCD,MN 平面ABCD,/ /MN平面ABCDA对; 由正方体可知AD、 1 AD都与平面 1 BDD相交于点D, 1 D B 平面 1 BDD, 1 DD B, 直线AD、 1 AD都与直线 1 D B是异面直线,B、C错; / /MNAB,AB不与平面 11 BDD B垂直,MN不与平面 11 BDD B垂直,D错 故选:A 【归纳总结】 本题考查了线面平行的判定定理和线面垂直的判定定理与性质, 考查了逻辑推 理核心素养,属于中档题 7已知函数 2 1 ( ) 4 f x
15、x,( )sing xx,则图象为如图的函数可能是() A 1 ( )( ) 4 yf xg xB 1 ( )( ) 4 yf xg x C( ) ( )yf x g xD ( ) ( ) g x y f x 【思路分析】可以判断所求函数为奇函数,利用函数的奇偶性可排除选项A,B;利用函 数在(0,) 4 上的单调性可判断选项C,D 【解析】 :由图可知,图象关于原点对称,则所求函数为奇函数, 因为 2 1 ( ) 4 f xx为偶函数,( )sing xx为奇函数, 函数 2 1 ( )( )sin 4 yf xg xxx为非奇非偶函数,故选项A错误; 函数 2 1 ( )( )sin 4
16、yf xg xxx为非奇非偶函数,故选项B错误; 函数 2 1 ( ) ( )()sin 4 yf x g xxx,则 2 1 2 sin()cos0 4 yxxxx 对(0,) 4 x 恒成立, 则函数( ) ( )yf x g x在(0,) 4 上单调递增,故选项C错误故选:D 【归纳总结】本题考查了函数图象的识别,解题的关键是掌握识别图象的方法:可以从定义 域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象 能力与逻辑推理能力,属于中档题 9已知a,bR,0ab ,函数 2 ( )()f xaxb xR若()f st,( )f s,()f st成等比 数列,
17、则平面上点( , )s t的轨迹是() A直线和圆B直线和椭圆C直线和双曲线D直线和抛物线 【思路分析】利用等比中项的定义得到 2 ( )() ()f sf st f st,代入解析式中整理化简,可 得 222 (22 )0tatasb,分两种情况分别求解轨迹方程,由此判断轨迹即可 【解析】 :函数 2 ( )f xaxb,因为()f st,( )f s,()f st成等比数列, 则 2 ( )() ()f sf st f st,即 2222 () () ()asba stb a stb, 即 2422222222 2() () ()()a sabsbaststab stab stb, 整理可
18、得 422 22 220ata s tabt, 因为0a ,故 42 22 220atas tbt,即 222 (22 )0tatasb, 所以0t 或 22 220atasb, 当0t 时,点( , )s t的轨迹是直线; 当 22 220atasb,即 22 1 2 st bb aa ,因为0ab ,故点( , )s t的轨迹是双曲线 综上所述,平面上点( , )s t的轨迹是直线或双曲线 故选:C 【归纳总结】本题考查了等比中项的应用,动点轨迹方程的求解,要掌握常见的求解动点轨 迹的方法:直接法、定义法、代入法、消参法、交轨法等等,属于中档题 10 已知数列 n a满足 1 1a , 1
19、 (*) 1 n n n a anN a 记数列 n a的前n项和为 n S, 则() A 100 1 3 2 SB 100 34SC 100 9 4 2 SD 100 9 5 2 S 【思路分析】由题意首先整理所给的递推关系式,得到数列的通项的范围,然后结合求和公 式裂项即可确定前 100 项和的范围 【解析】 :由题意可得: 22 1 11111111 ()() 242 nn nnn aaaaa , 1 111 2 nn aa ,由累加法可得 111 1 22 n nn a , 从而 1 2 41 , 2 (1)31 1 1 nn nnn n aan aaa nna n , 1 1 3 n
20、 n an an ,由累乘法得 611 6 (1)(2)12 n a nnnn ,当1n 取等号, 100 1111 3 101102 1111 6 2 6 2331024 S 故选:A 【归纳总结】本题主要考查数列的递推关系式及其应用,数列求和与放缩的技巧等知识,属 于难题 二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。 11我国古代数学家赵爽用弦图给出了勾股定理的证明弦图是由四个全等的直角三角形 和中间的一个小正方形拼成的一个大正方形(如图所示) 若直角三角形直角边的长分别为 3,4,记大正方形的面积为 1 S,小正方形的面积为 2 S,则 1 2
21、S S 25 【思路分析】利用勾股定理求出直角三角形斜边长,即大正方形的边长,由 21 SSS 阴影, 求出 2 S,再求出 1 2 S S 【解析】 :直角三角形直角边的长分别为 3,4, 直角三角形斜边的长为 22 345, 即大正方形的边长为 5, 2 1 525S, 则小正方形的面积 21 1 254341 2 SSS 阴影 , 1 2 25 S S 故答案为:25 【归纳总结】本题考查了三角形中的几何计算和勾股定理,考查运算能力,属于基础题 12已知aR,函数 2 4,2, ( ) |3|,2 xx f x xa x 若( ( 6)3f f,则a 2 【思路分析】利用分段函数的解析式
22、,先求出( 6)f的值,进而求出( ( 6)f f,列出方程, 求解a的值即可 【解析】 :因为函数 2 4,2 ( ) |3|,2 xx f x xa x , 所以 2 ( 6)( 6)42f, 则( ( 6)f ff(2)|23|3a ,解得2a 故答案为:2 【归纳总结】本题考查了函数的求值问题,主要考查的是分段函数求值,解题的关键是根据 自变量的值确定使用哪一段解析式求解,属于基础题 13 已 知 多 项 式 34432 1234 (1)(1)xxxa xa xa xa, 则 1 a 5; 234 aaa 【思路分析】思路 1.利用通项公式求解 3 x的系数,即可求出 1 a的值;利用
23、赋值法,令1x , 即可求出 234 aaa的值 思路 2.用杨辉三角解。 【解析】 :解法一: 1 a即为展开式中 3 x的系数,所以 001 134 ( 1)5aCC; 令1x ,则有 34 1234 1(1 1)(1 1)16aaaa, 所以 234 165110aaa 故答案为:5;10 解 法 二 :( 李 健 老 师 补 解 ) 由 杨 辉 三 角 可 知 : 332 (1)331xxxx, 4324 ()41461xxxxx, 所 以 由 34432 1234 (1)(1)xxxa xa xa xa得 1 145a , 2 363a , 3 347a , 4 1 10a ,故 2
24、34 37010aaa 【归纳总结】 本题考查了二项展开式的通项公式的运用以及赋值法求解系数问题, 考查了运 算能力,属于基础题 14在ABC中,60B,2AB ,M是BC的中点,2 3AM ,则AC 2 13; cosMAC 【思路分析】在ABM、ABC和AMC中用余弦定理即可解决此题 【解析】 :在ABM中: 222 2cos60AMBABMBA BM, 222 1 (2 3)222 2 BMBM, 2 280BMBM,解得:4BM 或2(舍去) 点M是BC中点,4MC,8BC ,在ABC中: 222 2822 8cos6052AC , 2 13AC; 在AMC中: 222 (2 3)(2
25、 13)42 39 cos 13 22 32 13 MAC 故答案为:2 13; 2 39 13 【归纳总结】本题考查余弦定理应用,考查数学运算能力,属于中档题 15袋中有 4 个红球,m个黄球,n个绿球现从中任取两个球,记取出的红球数为, 若取出的两个球都是红球的概率为 1 6 , 一红一黄的概率为 1 3 , 则mn1,( )E 【思路分析】根据取出的两个球都是红球的概率为 1 6 ,一红一黄的概率为 1 3 ,得到关于m, n的方程,然后求出m,n的值,得到mn的值;先确定的可能取值,求出相应的概率, 由数学期望的计算公式求解即可 【解析】 :由题意, 2 4 2 4 16 (2) 63
展开阅读全文