书签 分享 收藏 举报 版权申诉 / 8
上传文档赚钱

类型江苏省南京市刘校联合体2021高二下学期数学期末试卷(及答案).docx

  • 上传人(卖家):副主任
  • 文档编号:1601183
  • 上传时间:2021-07-23
  • 格式:DOCX
  • 页数:8
  • 大小:578.70KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《江苏省南京市刘校联合体2021高二下学期数学期末试卷(及答案).docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 南京市 联合体 2021 下学 期数 学期末 试卷 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、1 20202021 学年第二学期南京六校联合体期末调研试题 高二数学 一、单项选择题(本大题共 8 小题,每小题 5 分,共计 40 分在每小题给出的四个选项中, 只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1已知 i 是虛数单位,则复数 2022 2021 2i 2i z 对应的点所在的象限是 A第一象限B第二象限C第三象限D第四象限 2甲、乙、丙、丁四位同学各自对 x,y 两变量的线性相关性作试验,并用回归分析方法分 别求的相关系数 r,如下表 相关系数甲乙丙丁 r0.920.780.690.887 则哪位同学的试验结果体现两变量有更强的线性相关性? A甲B乙C丙D丁 3

    2、设 xR,则“x2x0”是“1x 1”的 A充分不必要条件B必要不充分条件 C充要条件D既不充分也不必要条件 4 1 (4)nx x (n N )展开式中所有项的系数和为 243,展开式中二项式系数最大值为 A6B10C15D20 5已知空间四边形 OABC,其对角线为 OB,AC,M,N 分别是对边 OB,AC 的中点,点 G 在线段 MN 上,MG2GN ,现用基向量OA ,OB ,OC ,表示向量OG ,设OG xOA yOB zOC ,则 x,y,z 的值分别是 A 1 3 x , 1 3 y , 1 3 z B 1 3 x , 1 3 y , 1 6 z C 1 3 x , 1 6

    3、y , 1 3 z D 1 6 x , 1 3 y , 1 3 z 6用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000 大的偶数共有 A144 个B120 个C96 个D72 个 7若曲线( )lnf xxx在点( 0 x, 0 ()f x)处的切线方程为 ykxb,则 kb 的最小值为 A1B 1 2 C 1 2 D1 8已知双曲线 C: 2 2 2 41 x y a (a0)的右顶点到其一条渐近线的距离等于,抛物线 E:y2 2px 的焦点与双曲线 C 的右焦点重合,则抛物线 E 上的动点 M 到直线 l:4x3y11 0 和 l2:x1 的距离之和的最小值为

    4、A1B2C3D4 二、多项选择题(本大题共 4 小题,每小题 5 分,共计 20 分在每小题给出的四个选项中, 至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 2 9下列说法正确的有 A若随机变量 XN(1, 2 ),P(X4)0.79,则 P(X2)0.21 B若随机变量 XB(10, 1 3 ),则方差 D(3X2)22 C从 10 名男生,5 名女生中选取 4 人,则其中至少有一名女生的概率为 13 514 4 15 C C C D已知随机变量 X 的分布列为 P(Xi) i(i1) a (i1,2,3),则 P(X2) 2 9 10设复数 1 z, 2 z满足 12 0z

    5、z,则下列结论正确的是 A 12 zzB 12 zz C若 1 z(2i)3i,则 12 z z2iD若 1 (13i)z 1,则 1 2 z3 11已知函数( )sinf xxx,下列说法正确的是 A函数( )f x在(0,)上不单调 B函数( )f x在( 2 ,)内有两个极值点 C函数( )f x在2,2内有 4 个零点 D函数 ( )1 ( ) ln f x g x x 在区间(1,上的最小值为 1 ln 12如图,在四棱锥 PABCD,底面 ABCD 是边长为 2 的正方形,三角形 PAD 为等边三 角形,平面 PAD平面 ABCD,点 M 在线段 PB 上,AC,BD 交于点 E,

    6、则下列结论 正确的是 A若 PD平面 MAC,则 M 为 PB 的中点 B若 M 为 PB 的中点,则三棱锥 MPAC 的体积为 3 3 C锐二面角 BPDA 的大小为 3 D若BP4BM ,则直线 MC 与平面 BDP 所成角的余弦值为 5 7 三、填空题(本大题共 4 小题, 每小题 5 分,共计 20 分请把答案填写在答题卡相应位置 上) 13点 A 是椭圆 C1: 22 1 259 xy 与双曲线 C2: 22 1 97 xy 的一个交点,点 F1,F2是椭圆 C1的两个焦点,则 12 AFAF 14为庆祝中国共产党成立 100 周年,某志愿者协会开展“党史下乡”宣讲活动,准备派遣 5

    7、 名志愿者去三个乡村开展宣讲,每名志愿者只去一个乡村,每个乡村至少安排 1 名志 愿者,则不同的安排方法共有种(用数字作答) 15已知 3 1 (2)(1)mx x 的展开式中的常数项为 8,则实数 m 16购买某种意外伤害保险,每个投保人年度向保险公司交纳保险费 20 元,若被保险人在 3 购买保险的一年度内出险, 可获得赔偿金 20 万元 已知该保险每一份保单需要赔付的概 率为 5 10,某保险公司一年能销售 10 万份保单,且每份保单相互独立,则一年度内该保 险公司此项保险业务需要赔付的概率约为(保留两位有效数字) ;一年度内盈利 的期望为万元(参考数据: 5 5 10 (1 10 )

    8、0.37) 四、解答题(本大题共 6 小题,共计 70 分请在答题卡指定区域内作答解答时应写出文 字说明、证明过程或演算步骤) 17 (本小题满分 10 分) 某企业的甲、乙两种产品在东部地区三个城市以及西部地区两个城市的销售量 x,y 的 数据如下: 东部城市 A东部城市 B东部城市 C西部城市 D西部城市 E x4050602030 y1101802103070 (1)根据上述数据补全下列 22 联表; (2)判断是否有 99%的把握认为东、西部的地区差异与甲、乙两种产品的销售量相关 参考公式: 临界值表: 22 列联表: 18 (本小题满分 12 分) 已知函数 32 1 ( )1 3

    9、f xxxax (1)当 a3 时,求函数( )f x的极值; (2)当 a2 时,若函数( )f x在区间a,2上单调递增,求实数 a 的取值范围 4 19 (本小题满分 12 分) 如图,在直三棱柱 ABCA1B1C1中,AA1ABAC2,ABAC,M 是棱 BC 的中 点,点 P 在线段 A1B 上 (1)若 1 BP2PA ,求直线 MP 与直线 AC 所成角的余弦值大小; (2)若 N 是 CC1的中点,直线 AB 与平面 PMN 所成角的正弦值为 7 7 ,若线段 BP 的 长度 20 (本小题满分 12 分) 某公司招聘员工,甲、乙两人同时参与应聘,应聘者需进行笔试和面试,笔试分

    10、为三个 环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为 2 3 ,乙笔试部分每个环节 通过的概率依次为 3 4 ,1 3 ,1 2 , 笔试三个环节至少通过两个才能够参加面试, 否则直接淘汰; 面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为 3 4 , 1 2 , 乙面试部分每个环节通过的概率依次为 2 3 ,3 4 ,若面试部分的两个环节都通过,则可以被该 公司成功录用甲、乙两人通过各个环节相互独立 (1)求乙未能参与面试的概率; (2)记甲本次应聘过程中通过的环节数为 X,求 X 的分布列以及数学期望; (3)若该公司仅招聘 1 名员工,试通过概率计算

    11、,判断甲、乙两人谁更有可能入职 5 21 (本小题满分 12 分) 在平面直角坐标系 xOy 中,椭圆 C: 22 22 1 xy ab (ab0)的离心率为 3 2 ,直线 yx 被椭圆 C 截得的线段长为 4 10 5 (1)求椭圆 C 的方程; (2) 设直线 l 与 C 交于 M、 N 两点, 点 D 在椭圆 C 上, O 是坐标原点, 若四边形 OMDN 为平行四边形,则此四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明 理由 22 (本小题满分 12 分) 已知函数( )lnf xaxxa (1)判断( )f x的单调性,并写出单调区间; (2)若( )f x存在两个零点 1 x, 2 x,求 a 的取值范围,并证明 12 1x x 6 参考答案参考答案 1D2A3A4B5C6B7D8C 9AD10ACD11AD12ABD 131614150152160.63180 17 18 19 7 20 21 22 8

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省南京市刘校联合体2021高二下学期数学期末试卷(及答案).docx
    链接地址:https://www.163wenku.com/p-1601183.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库