初中升高中假期新高一数学衔接材料(共7讲).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中升高中假期新高一数学衔接材料(共7讲).doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 升高 假期 新高 数学 衔接 材料 下载 _初高中衔接_数学_高中
- 资源描述:
-
1、第一讲第一讲 数与式的运算数与式的运算 在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代 数式简称为数与式代数式中有整式(多项式、单项式) 、分式、根式它们具有实数的属性, 可以进行运算在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式) , 并且知道乘法公式可以使多项式的运算简便由于在高中学习中还会遇到更复杂的多项式乘法运 算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式在 根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被 开方数是字母的情形,但在初中却没有涉及,因此本节中要
2、补充基于同样的原因,还要补充“繁 分式”等有关内容 一、乘法公式一、乘法公式 【公式【公式 1】cabcabcbacba222)( 2222 证明证明: 2222 )(2)()()(ccbabacbacba cabcabcbacbcacbaba222222 222222 等式成立 【例例 1】计算: 22 ) 3 1 2(xx 解解:原式= 22 3 1 )2(xx 9 1 3 22 3 8 22 )2( 3 1 2 3 1 2)2(2) 3 1 ()2()( 234 222222 xxxx xxxxxx 说明说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列 【公式【公式 2】 3322
3、 )(babababa(立方和公式立方和公式) 证明证明: 3332222322 )(bababbaabbaabababa 说明说明:请同学用文字语言表述公式 2. 【例例 2】计算:)( 22 bababa 解解:原式= 333322 )()()()(bababbaaba 我们得到: 【公式【公式 3】 3322 )(babababa(立方差公式立方差公式) 请同学观察立方和、立方差公式的区别与联系,公式 1、2、3 均称为乘法公式乘法公式 【例例 3】计算: (1))416)(4( 2 mmm(2)) 4 1 10 1 25 1 )( 2 1 5 1 ( 22 nmnmnm (3))164
4、)(2)(2( 24 aaaa(4) 22222 )(2(yxyxyxyx 解解: (1)原式= 333 644mm (2)原式= 3333 8 1 125 1 ) 2 1 () 5 1 (nmnm (3)原式=644)()44)(4( 63322242 aaaaa (4)原式= 2222222 )()()(yxyxyxyxyxyx 6336233 2)(yyxxyx 说明说明: (1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结 构 (2)为了更好地使用乘法公式,记住 1、2、3、4、20 的平方数和 1、2、3、4、 10 的立方数,是非常有好处的 【例例 4】已
5、知013 2 xx,求 3 3 1 x x 的值 解解:013 2 xx0 x3 1 x x 原式=18)33(33) 1 )( 1 () 1 1)( 1 ( 22 2 2 x x x x x x x x 说明说明: 本题若先从方程013 2 xx中解出x的值后, 再代入代数式求值, 则计算较烦琐 本 题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算请注意整体代换法本 题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举 【例例 5】已知0cba,求 111111 ()()()abc bccaab 的值 解解:bacacbcbacba, 0 原式= ab ba c
6、 ac ca b bc cb a abc cba ab cc ac bb bc aa 222 )()()( abccabccabbababa3)3(3)( 32233 abccba3 333 ,把代入得原式=3 3 abc abc 说明说明:注意字母的整体代换技巧的应用 引申引申:同学可以探求并证明: )(3 222333 cabcabcbacbaabccba 二、根式二、根式 式子(0)a a 叫做二次根式,其性质如下: (1) 2 ()(0)aa a(2) 2 |aa (3)(0,0)abab ab(4)(0,0) bb ab a a 【例例 6】化简下列各式: (1) 22 ( 32)(
7、 31)(2) 22 (1)(2) (1)xxx 解解:(1) 原式=|32|31| 2331 1 (2) 原式= (1)(2)23 (2) |1|2| (1)(2)1 (1x2) xxxx xx xx 说明说明:请注意性质 2 |aa的使用:当化去绝对值符号但字母的范围未知时,要对字母的 取值分类讨论 【例例 7】计算(没有特殊说明,本节中出现的字母均为正数): (1) 3 23 (2) 11 ab (3) 3 28 2 x xx 解解:(1) 原式= 2 3(23)3(23) 63 3 23(23)(23) (2) 原式= 22 aba bab abab (3) 原式= 22 2 2222
8、2 23 2 22 x x xxxx xxxx x 说明说明:(1)二次根式的化简结果应满足:被开方数的因数是整数,因式是整式;被开方 数不含能开得尽方的因数或因式 (2)二次根式的化简常见类型有下列两种:被开方数是整数或整式化简时,先将它分解因数 或因式, 然后把开得尽方的因数或因式开出来; 分母中有根式(如 3 23 )或被开方数有分母(如 2 x )这时可将其化为 a b 形式(如 2 x 可化为 2 x ) ,转化为 “分母中有根式”的情况化简时, 要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简(如 3 23 化为 3(23) (23)(23) ,其中23与23叫做互
9、为有理化因式) 【例例 8】计算: (1) 2 (1)(1)()ababab(2) aa aabaab 解解:(1) 原式= 22 (1)()(2)2221baaabbaabb (2) 原式= 11 ()() aa aabaababab ()()2 ()() ababa ab abab 说明说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次 根式的运算 【例例 9】设 2323 , 2323 xy ,求 33 xy的值 解解: 2 2 (23)23 74 3,74 3 14,1 2323 xyxyxy 原式= 2222 ()()()()314(143)2702xy
10、 xxyyxyxyxy 说明说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结 论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量 三、分式三、分式 当分式 A B 的分子、分母中至少有一个是分式时, A B 就叫做繁分式,繁分式的化简常用以下两 种方法:(1) 利用除法法则;(2) 利用分式的基本性质 【例例 10】化简 1 1 x x x x x 解法一解法一:原式= 22 2 (1)1 1(1) 1(1)(1)1 1 x xxxxxx xxxx xxxxx xxx xxxx x x 解法一解法一:原式= 2 2 (1)1 (1)(1) 11
11、1 () x xxxxx xxxxx xxxx xxx xx xx x 说明说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二 则是利用分式的基本性质 AAm BBm 进行化简一般根据题目特点综合使用两种方法 【例例 11】化简 2 22 3961 62279 xxxx xxxx 解解:原式= 2 22 3961161 2(3)3(3)(3)2(3)(3)(39)(9) xxxxx xxxxxxxxxx 2 2(3)12(1)(3)(3)3 2(3)(3)2(3)(3)2(3) xxxxx xxxxx 说明说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母
12、为多项式时,应先因式分解再 进行约分化简;(2) 分式的计算结果应是最简分式或整式 A组组 1二次根式 2 aa 成立的条件是() A0a B0a C0a Da是任意实数 2若3x ,则 2 96|6|xxx的值是() ABCD 3计算: (1) 2 (34 )xyz(2) 2 (21)()(2 )abab ab (3) 222 ()()()ab aabbab(4) 22 1 (4 )(4) 4 ababab 4化简(下列a的取值范围均使根式有意义): (1) 3 8a(2) 1 a a (3) 4ab a bb a (4) 112 23231 5化简: (1) 2 1 9102 325 mm
13、 mmm m (2) 2 22 (0) 2 xyxy xy xx y B组组 1若 11 2 xy ,则 33xxyy xxyy 的值为(): 练练习习 A 3 5 B 3 5 C 5 3 D 5 3 2计算: (1)()()abcabc(2) 11 1() 23 3设 11 , 3232 xy ,求代数式 22 xxyy xy 的值 4当 22 320(0,0)aabbab,求 22 abab baab 的值 5设x、y为实数,且3xy ,求 yx xy xy 的值 6 已知 111 20,19,21 202020 axbxcx, 求代数式 222 abcabbcac的值 7设 51 2 x
14、 ,求 42 21xxx的值 8展开 4 (2)x 9计算(1)(2)(3)(4)xxxx 10计算()()()()xyzxyz xyz xyz 11化简或计算: (1) 113 ( 184) 23 23 (2) 2 21 22(25) 3 52 (3) 2 x xxyxxyy xyyx xyy (4)()() bababab a ababbabaab 第一讲 习题答案 A 组 1 C2 A 3 (1) 222 9166824xyzxyxzyz(2) 22 353421aabbab (3) 22 33a bab(4) 33 1 16 4 ab 4 2()2 22 1 2 ab aaa ab 5
15、 2m mxy B 组 1 D22,3 22 3acbac3 13 3 6 43,252 363735 8 432 8243216xxxx 9 432 10355024xxxx 10 444222222 222xyzx yx zy z 11 4 3 3, 3 xy ba y 第二讲第二讲 因式分解因式分解 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算、 解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平 方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等
16、 一、公式法一、公式法(立方和、立方差公式立方和、立方差公式) 在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式: 2233 ()()ab aabbab(立方和公式) 2233 ()()ab aabbab(立方差公式) 由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到: 3322 ()()abab aabb 3322 ()()abab aabb 这就是说, 两个数的立方和(差), 等于这两个数的和(差)乘以它们的平方和与它们积的差(和) 运用这两个公式,可以把形式是立方和或立方差的多项式进行因式分解 【例【例 1】用立方和或立方差公式分解下列各多项式: (1)
17、 3 8x(2) 3 0.12527b 分析:分析: (1)中, 3 82,(2)中 333 0.1250.5 ,27(3 )bb 解:解:(1) 3332 82(2)(42)xxxxx (2) 33322 0.125270.5(3 )(0.53 )0.50.5 3(3 ) bbbbb 2 (0.53 )(0.251.59)bbb 说明说明: (1) 在运用立方和(差)公式分解因式时, 经常要逆用幂的运算法则, 如 333 8(2)a bab, 这里逆用了法则()n nn aba b; (2) 在运用立方和(差)公式分解因式时, 一定要看准因式中各项的 符号 【例【例 2】分解因式: (1)
18、34 381a bb(2) 76 aab 分析:分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现 66 ab,可 看着是 3232 ()()ab或 2323 ()()ab 解:解:(1) 343322 3813 (27)3 (3 )(39)a bbb abb ab aabb (2) 76663333 ()()()aaba aba abab 2222 2222 ()()()() ()()()() a ab aabbab aabb a ab ab aabbaabb 二、分组分解法二、分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式而对于
19、四项 以上的多项式,如mambnanb既没有公式可用,也没有公因式可以提取因此,可以先 将多项式分组处理这种利用分组来因式分解的方法叫做分组分解法分组分解法的关键在于如 何分组 1分组后能提取公因式分组后能提取公因式 【例【例 3】把2105axaybybx分解因式 分析:分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从 两组分别提出公因式2a与b,这时另一个因式正好都是5xy,这样可以继续提取公因式 解:解:21052 (5 )(5 )(5 )(2)axaybybxa xyb xyxyab 说明:说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合
20、理选择分组的方 法本题也可以将一、四项为一组,二、三项为一组,同学不妨一试 【例【例 4】把 2222 ()()ab cdabcd分解因式 分析:分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式 解:解: 22222222 ()()ab cdabcdabcabda cdb cd 2222 ()()abca cdb cdabd ()()()()ac bcadbd bcadbcad acbd 说明:说明:由例 3、例 4 可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法 交换律,分组后,为了提公因式,又运用了分配律由此可以看出运算律在因式分解中所起的作
21、用 2分组后能直接运用公式分组后能直接运用公式 【例【例 5】把 22 xyaxay分解因式 分析分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其 中一个因式是xy;把第三、四项作为另一组,在提出公因式a后,另一个因式也是xy. 解:解: 22 ()()()()()xyaxayxy xya xyxy xya 【例【例 6】把 222 2428xxyyz分解因式 分析分析:先将系数 2 提出后,得到 222 24xxyyz,其中前三项作为一组,它是一个完全 平方式,再和第四项形成平方差形式,可继续分解因式 解:解: 222222 24282(24)xxyyzxxy
22、yz 22 2()(2 ) 2(2 )(2 )xyzxyz xyz 说明:说明:从例 5、例 6 可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取 公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可 以分组分解法来分解因式 三、十字相乘法三、十字相乘法 1 2 ()xpq xpq型的因式分解型的因式分解 这类式子在许多问题中经常出现,其特点是: (1) 二次项系数是 1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和 22 ()()()()()xpq xpqxpxqxpqx xpq xpxp xq 因此, 2 ()()()x
23、pq xpqxp xq 运用这个公式,可以把某些二次项系数为 1 的二次三项式分解因式 【例【例 7】把下列各式因式分解: (1) 2 76xx(2) 2 1336xx 解:解:(1) 6( 1)( 6),( 1)( 6)7 2 76( 1)( 6)(1)(6)xxxxxx (2) 3649,4913 2 1336(4)(9)xxxx 说明说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数 的符号相同 【例【例 8】把下列各式因式分解: (1) 2 524xx(2) 2 215xx 解:解:(1) 24( 3)8,( 3)85 2 524( 3)(8)(3)(8)
24、xxxxxx (2) 15( 5)3,( 5)32 2 215( 5)(3)(5)(3)xxxxxx 说明说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数 与一次项系数的符号相同 练:练: 2 (1)65xx 2 (2)421xx(3) 2 1130 xx(4) 2 12xx 【例【例 9】把下列各式因式分解: (1) 22 6xxyy(2) 222 ()8()12xxxx 分析:分析:(1) 把 22 6xxyy看成x的二次三项式,这时常数项是 2 6y,一次项系数是y, 把 2 6y分解成3y与2y的积,而3( 2 )yyy ,正好是一次项系数 (2) 由换
25、元思想,只要把 2 xx整体看作一个字母a,可不必写出,只当作分解二次三 项式 2 812aa 解:解:(1) 2222 66(3 )(2 )xxyyxyxxy xy (2) 22222 ()8()12(6)(2)xxxxxxxx (3)(2)(2)(1)xxxx 练练:(1) 42 718xx(2) 63 12aa 2一般二次三项式一般二次三项式 2 axbxc型的因式分解型的因式分解 大家知道, 2 1122121 22 11 2 ()()()a xca xca a xa ca c xc c 反过来,就得到: 2 121 22 11 21122 ()()()a a xa ca c xc c
展开阅读全文