2021年贵州省文科数学高考真题Word档(原卷)+(答案解析).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年贵州省文科数学高考真题Word档(原卷)+(答案解析).docx》由用户(唯美)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原卷 答案解析 2021 贵州省 文科 数学 高考 Word 答案 解析 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、绝密绝密启用前启用前 2021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试( (贵州贵州卷卷) ) 文科数学文科数学 注意事项:注意事项: 1.答卷前,考生务必将自己的姓名答卷前,考生务必将自己的姓名 准考证号填写在答题卡上准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,如需改动, 用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷 上无效
2、上无效. 3.考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一一 选择题选择题:本题共本题共 12 小题小题,每小题每小题 5 分分,共共 60 分分.在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是只有一项是 符合题目要求的符合题目要求的. 1. 设集合 1,3,5,7,9 ,27MNxx,则MN () A.7,9B.5,7,9C. 3,5,7,9 D. 1,3,5,7,9 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得 到如下频率分布直方图: 根据此频率分布直方图,下面结论中不正确的是() A. 该
3、地农户家庭年收入低于 4.5 万元的农户比率估计为 6% B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10% C. 估计该地农户家庭年收入的平均值不超过 6.5 万元 D. 估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间 3. 已知 2 (1)32izi,则z () A. 3 1 2 i B. 3 1 2 i C. 3 2 iD. 3 2 i 4. 下列函数中是增函数的为() A. f xx B. 2 3 x fx C. 2 f xx D. 3 f xx 5. 点3,0到双曲线 22 1 169 xy 的一条渐近线的距离为() A. 9 5 B
4、. 8 5 C. 6 5 D. 4 5 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录 视力数据,五分记录法的数据 L 和小数记录表的数据 V 的满足5lgLV已知某同学视力的五分记录法 的数据为 4.9,则其视力的小数记录法的数据为() (1010 1.259 ) A. 1.5 B. 1.2 C. 0.8 D. 0.6 7. 在一个正方体中,过顶点 A 的三条棱的中点分别为 E,F,G该正方体截去三棱锥A EFG后,所得多 面体的三视图中,正视图如图所示,则相应的侧视图是( ) A.B.C.D. 8. 在ABC中,已知 120B ,19AC ,
5、2AB ,则BC () A. 1 B. 2 C.5D. 3 9. 记 n S为等比数列 n a的前 n 项和.若 2 4S , 4 6S ,则 6 S () A. 7B. 8C. 9D. 10 10. 将 3 个 1 和 2 个 0 随机排成一行,则 2 个 0 不相邻的概率为() A. 0.3B. 0.5C. 0.6D. 0.8 11. 若 cos 0,tan2 22sin ,则tan() A. 15 15 B. 5 5 C. 5 3 D. 15 3 12. 设 fx是定义域为 R的奇函数,且 1fxfx.若 11 33 f ,则 5 3 f () A. 5 3 B. 1 3 C. 1 3
6、D. 5 3 二二 填空题:本题共填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13. 若向量, a b 满足3,5,1aaba b ,则b _. 14. 已知一个圆锥的底面半径为 6,其体积为30则该圆锥的侧面积为_. 15. 已知函数 2cosf xx的部分图像如图所示,则 2 f _. 16. 已知 12 ,F F为椭圆C: 22 1 164 xy 的两个焦点, P, Q为C上关于坐标原点对称的两点, 且 12 PQFF, 则四边形 12 PFQF的面积为_ 三三 解答题解答题:共共 70 分分.解答应写出交字说明解答应写出交字说明 证明过程程或演算步骤证
7、明过程程或演算步骤,第第 1721 题为必考题题为必考题,每每 个试题考生都必须作答个试题考生都必须作答.第第 22 23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答. (一一)必考题:共必考题:共 60 分分. 17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分 别用两台机床各生产了 200 件产品,产品的质量情况统计如下表: 一级品二级品合计 甲机床15050200 乙机床12080200 合计270130400 (1)甲机床、乙机床生产的产品中一级品的频率分别是多少? (2)能否有 99%的把握认为甲机床的产品质量与乙机床的产品
8、质量有差异? 附: 2 2 () ()()()() n adbc K a b c d a c b d 2 P Kk0.0500.0100.001 k3.8416.63510.828 18. 记 n S为数列 n a的前 n 项和,已知 21 0,3 n aaa,且数列 n S是等差数列,证明: n a是等差数 列. 19. 已知直三棱柱 111 ABCABC中,侧面 11 AAB B为正方形,2ABBC,E,F 分别为AC和 1 CC的中 点, 11 BFAB. (1)求三棱锥FEBC的体积; (2)已知 D 为棱 11 AB上的点,证明:BF DE. 20. 设函数 22 ( )3ln1f
9、xa xaxx,其中0a . (1)讨论 fx的单调性; (2)若 yf x的图像与x轴没有公共点,求 a 的取值范围. 21. 抛物线 C 的顶点为坐标原点 O焦点在 x 轴上,直线 l:1x 交 C 于 P,Q 两点,且OPOQ已知 点2,0M,且M与 l 相切 (1)求 C,M的方程; (2)设 123 ,A A A是 C 上的三个点,直线 12 A A, 13 A A均与M相切判断直线 23 A A与M的位置关系, 并说明理由 (二二)选考题选考题:共共 10 分分.请考生在第请考生在第 22 23 题中任选一题作答题中任选一题作答.如果多做如果多做,则按所做的第一题计分则按所做的第一
10、题计分. 选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22. 在直角坐标系xOy中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2 2cos (1)将 C 的极坐标方程化为直角坐标方程; (2)设点 A 的直角坐标为1,0,M 为 C 上的动点,点 P 满足 2APAM ,写出的轨迹 1 C的参数方 程,并判断 C 与 1 C是否有公共点 选修选修 4-5:不等式选讲:不等式选讲 23. 已知函数( )2 , ( )2321f xxg xxx (1)画出 yf x和 yg x的图像; (2)若 f xag x,求 a 的取值范围 绝密启用前 2021
11、年普通高等学校招生全国统一考试(全国甲卷) 文科数学答案 (考区:四川、云南、贵州、广西、西藏) 注意事项:注意事项: 1.答卷前,考生务必将自己的姓名答卷前,考生务必将自己的姓名 准考证号填写在答题卡上准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,如需改动, 用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷 上无效上无效. 3.考试结束后,将本试卷和答
12、题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一一 选择题选择题:本题共本题共 12 小题小题,每小题每小题 5 分分,共共 60 分分.在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是只有一项是 符合题目要求的符合题目要求的. 1. 设集合 1,3,5,7,9 ,27MNxx,则MN () A.7,9B.5,7,9C. 3,5,7,9 D. 1,3,5,7,9 【答案】B 【解析】 【分析】求出集合N后可求MN. 【详解】 7 , 2 N ,故5,7,9MN, 故选:B. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得 到如
13、下频率分布直方图: 根据此频率分布直方图,下面结论中不正确的是() A. 该地农户家庭年收入低于 4.5 万元的农户比率估计为 6% B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10% C. 估计该地农户家庭年收入的平均值不超过 6.5 万元 D. 估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间 【答案】C 【解析】 【分析】根据直方图的意义直接计算相应范围内的频率,即可判定 ABD,以各组的中间值作为代表乘以相应 的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定 C. 【详解】因为频率直方图中的组距为 1,
14、所以各组的直方图的高度等于频率.样本频率直方图中的频率即可 作为总体的相应比率的估计值. 该地农户家庭年收入低于 4.5 万元的农户的比率估计值为0.020.040.066%,故 A 正确; 该地农户家庭年收入不低于 10.5 万元的农户比率估计值为0.040.02 30.1010% ,故 B 正确; 该地农户家庭年收入介于 4.5 万元至 8.5 万元之间的比例估计值为 0.100.140.20 20.6464%50%,故 D 正确; 该地农户家庭年收入的平均值的估计值为 3 0.024 0.045 0.106 0.147 0.208 0.209 0.10 10 0.10 11 0.04 1
15、2 0.02 13 0.02 14 0.027.68 (万元), 超过 6.5 万元,故 C 错误. 综上,给出结论中不正确的是 C. 故选:C. 【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率 的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均 值的估计值.注意各组的频率等于 频率 组距 组距 . 3. 已知 2 (1)32izi,则z () A. 3 1 2 i B. 3 1 2 i C. 3 2 iD. 3 2 i 【答案】B 【解析】 【分析】由已知得 32 2 i z i ,根据复数除法运算法则,
16、即可求解. 【详解】 2 (1)232izizi , 32(32 )233 1 2222 iiii zi ii i . 故选:B. 4. 下列函数中是增函数的为() A. f xx B. 2 3 x fx C. 2 f xxD. 3 f xx 【答案】D 【解析】 【分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【详解】对于 A, f xx 为R上的减函数,不合题意,舍. 对于 B, 2 3 x fx 为R上的减函数,不合题意,舍. 对于 C, 2 f xx在,0为减函数,不合题意,舍. 对于 D, 3 f xx为R上的增函数,符合题意, 故选:D. 5. 点3,0到双曲线 22 1
17、 169 xy 的一条渐近线的距离为() A. 9 5 B. 8 5 C. 6 5 D. 4 5 【答案】A 【解析】 【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可. 【详解】由题意可知,双曲线的渐近线方程为: 22 0 169 xy ,即3 40 xy, 结合对称性,不妨考虑点3,0到直线340 xy的距离: 909 59 16 d . 故选:A. 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录 视力数据,五分记录法的数据 L 和小数记录表的数据 V 的满足5lgLV已知某同学视力的五分记录法 的数据为 4.
18、9,则其视力的小数记录法的数据为() (1010 1.259 ) A. 1.5B. 1.2C. 0.8D. 0.6 【答案】C 【解析】 【分析】根据,L V关系,当4.9L 时,求出lgV,再用指数表示V,即可求解. 【详解】由5lgLV,当4.9L 时,lg0.1V , 则 1 0.1 10 10 11 10100.8 1.25910 V . 故选:C. 7. 在一个正方体中,过顶点 A 的三条棱的中点分别为 E,F,G该正方体截去三棱锥A EFG后,所得多 面体的三视图中,正视图如图所示,则相应的侧视图是( ) A.B.C.D. 【答案】D 【解析】 【分析】根据题意及题目所给的正视图还
19、原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示, 所以其侧视图为 故选:D 8. 在ABC中,已知 120B ,19AC ,2AB ,则BC () A. 1B. 2 C. 5 D. 3 【答案】D 【解析】 【分析】利用余弦定理得到关于 BC 长度的方程,解方程即可求得边长. 【详解】设,ABc ACb BCa, 结合余弦定理: 222 2cosbacacB 可得: 2 194 2cos120aa , 即: 2 2150aa ,解得:3a (5a 舍去) , 故3BC . 故选:D. 【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的
20、三条边求三个角; (2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形 9. 记 n S为等比数列 n a的前 n 项和.若 2 4S , 4 6S ,则 6 S () A. 7B. 8 C. 9D. 10 【答案】A 【解析】 【分析】根据题目条件可得 2 S, 42 SS, 64 SS成等比数列,从而求出 64 1SS,进一步求出答案. 【详解】 n S为等比数列 n a的前 n 项和, 2 S, 42 SS, 64 SS成等比数列 2 4S , 42 642SS 64 1SS, 64 11 67SS . 故选:A. 10. 将 3 个 1 和
21、2 个 0 随机排成一行,则 2 个 0 不相邻的概率为() A. 0.3B. 0.5C. 0.6D. 0.8 【答案】C 【解析】 【分析】利用古典概型的概率公式可求概率. 【详解】解:将 3 个 1 和 2 个 0 随机排成一行,可以是: 00111,01011,01101,01110,10011,10101,10110,11001,11010,11100, 共 10 种排法, 其中 2 个 0 不相邻的排列方法为: 01011,01101,01110,10101,10110,11010, 共 6 种方法, 故 2 个 0 不相邻的概率为 6 =0.6 10 , 故选:C. 11. 若 c
22、os 0,tan2 22sin ,则tan() A. 15 15 B. 5 5 C. 5 3 D. 15 3 【答案】A 【解析】 【分析】由二倍角公式可得 2 sin22sincos tan2 cos21 2sin ,再结合已知可求得 1 sin 4 ,利用同角三 角函数的基本关系即可求解. 【详解】 cos tan2 2sin 2 sin22sincoscos tan2 cos21 2sin2sin , 0, 2 ,cos0, 2 2sin1 1 2sin2sin ,解得 1 sin 4 , 2 15 cos1 sin 4 , sin15 tan cos15 . 故选:A. 【点睛】关键点
展开阅读全文