反比例函数专题训练(学生版).pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《反比例函数专题训练(学生版).pdf》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 专题 训练 学生 下载 _中考真题_中考复习_数学_初中
- 资源描述:
-
1、第 1页,总 68页 反比例函数专题训练(学生版)反比例函数专题训练(学生版) 1如图,一次函数y kxb 的图象交反比例函数 m y x 的图象于 A(2,-4) ,B(a, -1)两点 (1)求反比例函数与一次函数表达式; (2)连接 OA,OB,求OAB 的面积; (3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值? 2如图,一次函数0ykxb k的图象与反比例函数0 m ym x 的图象相交 于点1,2A,, 1B a (1)求反比例函数和一次函数的解析式 (2) 若直线0ykxb k与x轴交于点C,x轴上是否存在一点P, 使6 APC S ? 第 2页,总 68页
2、若存在,请求出点P坐标;若不存在,说明理由 3如图,已知一次函数与反比例函数的图象交于点4, 2A 和,4B a (1)求反比例函数及一次函数的解析式; (2)连接 AO 与 BO,求AOB的面积;并根据图象直接回答:当 x 在什么范围内时, 一次函数的值大于反比例函数的值 4如图,反比例函数(0,0) k ykx x 经过ABO边 AB 的中点 D,与边 AO 交于 点 C,且:1:2AC CO ,连接DO,若AOD的面积为 7 8 ,则 k 的值为_ 第 3页,总 68页 5如图,一次函数y kxb 与反比例函数 m y x 的图象交于点1,6A,3,Bn两 点与x轴交于点C (1)求一次
3、函数的表达式; (2)若点M在x轴上,且AMB的面积为 8,求点M的坐标 (3)结合图形,直接写出0 m kxb x 时x的取值范围 第 4页,总 68页 6如图,一次函数y kxb 的图象交反比例函数0 a yx x 的图象于 2, 4 , 1AB m两点,交x轴于点C (1)求反比例函数与一次函数的关系式 (2)求ABO的面积 (3)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值? 7如图,已知 A(1,6) ,B(n,2)是一次函数 ykx+b 的图象和反比例函数 y m x 的图象的两个交点,直线 AB 与 y 轴交于 C 点 (1)求反比例函数和一次函数的表达式; (2)
4、过点 C 作 CDx 轴双曲线与点 D,求ABD 的面积 第 5页,总 68页 8如图,直线 y2x 与反比例函数 y k x (x0)的图象交于点 A(4,n),ABx 轴,垂 足为 B (1)求 k 的值; (2)点 C 在 AB 上,若 OCAC,求 AC 的长; (3)点 D 为 x 轴正半轴上一点,在(2)的条件下,若 SOCDSACD,求点 D 的坐标 9在平面直角坐标系xOy中,反比例函数 m y x (0 x )的图象经过点(3,4)A,过 点A的直线y kxb 与x轴、y轴分别交于B,C两点 第 6页,总 68页 (1)求反比例函数的表达式; (2)若AOB的面积为BOC的面
5、积的 2 倍,求此直线的函数表达式 10 如图, 一次函数y kxb 与反比例函数 6 (0)yx x 的图象交于,6A m,3,Bn 两点 (1)求一次函数的解析式; (2)根据图象直接写出 6 0kxb x 的 x 的取值范围; (3)求AOB的面积 第 7页,总 68页 11如图,已知 A(3, 2 3 ),B(1,m)是一次函数 ykx+b 与反比例函数 y n x 图象 的两个交点,ACx 轴于点 C,BDy 轴于点 D (1)求 m 的值及一次函数解析式; (2)P 是线段 AB 上的一点,连接 PC,PD,若PCA 和PDB 面积相等,求点 P 坐 标 12 如图, 在平面直角坐
6、标系 xOy 中, 一次函数 y 3 2 x+3 的图象与反比例函数 y k x 的图象相交于 A(m,6) ,B 两点 (1)求反比例函数的表达式及点 B 的坐标; (2)点 P 在 x 轴上,连接 AP,BP,若ABP 的面积为 18,求满足条件的点 P 的坐标 第 8页,总 68页 13如图,在平面直角坐标系中,正比例函数 y 1 3 x 的图像与反比例函数 y k x 的图 像交于 A,B 两点,且点 A 的坐标为(6,a) (1)求反比例函数的表达式; (2)已知点 C(b,4)在反比例函数 y k x 的图像上,点 P 在 x 轴上,若AOC 的面 积等于AOP 的面积的两倍,请求
7、出点 P 的坐标 14如图,一次函数 yx+b 的图象与反比例函数 y k x (k 为常数且 k0)的图象交于 A(1,a) 、B 两点,与 x 轴交于点 C(4,0) (1)求一次函数和反比例函数的表达式; (2)若点 D 是第四象限内反比例函数图象上的点,且点 D 到直线 AC 的距离为 5 2, 求点 D 的横坐标 第 9页,总 68页 15如图,菱形 OABC 的一边 OA 在 x 轴负半轴上O 是坐标原点,点 A(13,0), 对角线 AC 与 OB 相交于点 D,且 ACOB130,若反比例函数 y k x (x0)的图象 经过点 D,并与 BC 的延长线交于点 E (1)求双曲
8、线 y k x 的解析式; (2)求 SAOB:SOCE之值 第 10页,总 68页 16如图,已知一次函数 y1kx+b 与反比例函数 y2 m x (x0)的图象分别交于点 A (2,4)和点 B(4,n) ,与坐标轴分别交于点 C 和点 D (1)求反比例函数和一次函数的解析式; (2)求 y1y2时,自变量 x 的取值范围; (3)若点 P 是 x 轴上一动点,当ABP 为直角三角形时,求点 P 的坐标 17如图,直线 y12x 与双曲线 y2 k x 交于点 A,点 B,过点 A 作 ACy 轴于点 C, OC2,延长 AC 至 D,使 CD4AC,连接 OD (1)求 k 的值;
9、(2)求AOD 的大小; (3)直接写出当 y1y2时,x 的取值范围 第 11页,总 68页 18如图,一次函数 yk1x+b 的图象与反比例函数 y 2 k x 的图象相交于点 A(1,4) 和点 B(4,n) (1)求这两个函数的解析式; (2)已知点 M 在线段 AB 上,连接 OA,OB,OM,若 SAOM 1 2 SBOM,求点 M 的坐 标 第 12页,总 68页 19如图,在平面直角坐标系 xOy 中,一次函数 1 5 2 yx 和2yx的图象相交于 点A,反比例函数 k y x 的图象经过点A (1)求反比例函数的解析式; (2)将直线 1 5 2 yx ,沿y轴正方向向上平
10、移(0)m m 个单位长度得到的新直线l 与反比例函数(0) k yx x 的图象只有一个公共点,求新直线l的函数表达式 20如图,RtABO的顶点A是双曲线 1 k y x 与直线 2 1yxk 在第二象限的 交点,ABx轴于B,且1.5 ABO S (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和AOC的面积; 第 13页,总 68页 (3)当函数值 12 yy时,求出此时自变量x的取值范围 21 如图, 在平面直角坐标系中, 直线y12x2与双曲线y2 k x 交于A、 C两点, ABOA 交 x 轴于点 B,且 ABOA (1)求双曲线的解析式; (2)连接
11、OC,求AOC 的面积 第 14页,总 68页 22如图,已知直线 3 3 yx 与双曲线 k y x 交于 A、B 两点,且点 A 的横坐标 3 (1)求 k 的值; (2)若双曲线 k y x 上点 C 的纵坐标为 3,求AOC 的面积; (3)在 y 轴上有一点 M,在直线 AB 上有一点 P,在双曲线 k y x 上有一点 N,若 四边形 OPNM 是有一组对角为 60的菱形,请写出所有满足条件的点 P 的坐标 23如图,点 A( 3 2 ,4),B(3,m)是直线 AB 与反比例函数 n y x (x0)图象的两个 交点ACx 轴,垂足为点 C,已知 D(0,1),连接 AD,BD,
12、BC 第 15页,总 68页 (1)求直线 AB 的表达式; (2)ABC 和ABD 的面积分别为 S1,S2,求 S2S1 24如图(1) ,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形, 4 sin 5 AOB,5OA,反比例函数(0) k yx x 在第一象限内的图象经过点A,与 BC交于点D (1)求点A的坐标和反比例函数解析式; (2)若 5 9 CD AC ,求点D的坐标; (3)在(2)中的条件下,如图(2) ,点P为直线OD上的一个动点,点Q为双曲线上 的一个动点,是否在这样的点P、点Q,使以B、D、P、Q为顶点的四边形是平行 四边形?若存在,请直接写出所有点
13、P的坐标;若不存在,请说明理由 第 16页,总 68页 25一次函数yxb-的图象是直线l,点 A(14,1)是l与反比例函数 y m x 的图象 的交点 (1)一次函数与反比例函数的表达式; (2)将直线l平移后得直线 l ,与 y 轴正半轴交于点 B(0,t),同时交x轴于点 C,若 SABC18,求 t 的值 第 17页,总 68页 26已知反比例函数 y= k x 与一次函数 y=ax+b 的图象相交于点 A(2,6) ,和点 B(4, m) (1)求反比例函数与一次函数的解析式; (2)直接写出不等式 k x ax+b 的解集和AOB 的面积 27如图,在平面直角坐标系中,一次函数0
14、ykxb k与反比例函数 0 m ym x 的图象相交于AB,两点,过点A作ADx轴于点D,5AO , :3:4OD AD ,B点的坐标为6n , (1)求一次函数和反比例函数的表达式; (2)求AOB的面积; (3)P是y轴上一点, 且AOP是等腰三角形, 请直接写出所有符合条件的P点坐标 第 18页,总 68页 28如图,在平面直角坐标系 xOy 中,一次函数 yx+2 的图象与 x 轴交于点 A 与反 比例函数 k y x (x0)的图象交于点 B,过点 B 作 BCx 轴于点 C,且 OAOC (1)求点 A 的坐标和反比例函数的表达式; (2)若点 P 是反比例函数 k y x (x
15、0)的图象上的点,过 P 作 PQy 轴,交直线 AB 于点 Q,当 PQBC 时,求点 P 的坐标 29如图,已知点4,Aa,10, 4B是一次函数y kxb 图象与反比例函数 m y x 图象的交点,且一次函数与x轴交于C点 (1)求该反比例函数和一次函数的解析式; (2)连接AO,求AOB的面积; (3)在y轴上有一点P,使得 AOPAOC SS ,求出点P的坐标 第 19页,总 68页 30 如图, 已知一次函数 1 ykxb的图象与x轴相交于点A, 与反比例函数 2 c y x 的 图象相交于1,5B , 5 , 2 Cd 两点 (1 )求一次函数和反比例函数的表达式; (2 )点
16、5 , 2 D m 是反比例函数 2 c y x 的图象上的点, 过点D作x轴的平行线与一次函 数 1 ykxb的图象相交于点P,连接AD,求 PAD的面积 第 20页,总 68页 31如图,反比例函数 y k x 与一次函数 yax+b 的图象交于点 A(2,6)、点 B(n, 1) (1)求反比例函数与一次函数的表达式; (2)点 E 为 y 轴上一个动点,若 SAEB5,求点 E 的坐标 32如图,在平面直角坐标系xOy中,正比例函数0ykx k与反比例函数 4 y x 的图象相交于2,Am、B 两点, 第 21页,总 68页 (1)求 B 点坐标和正比例函数的表达式; (2)将正比例函
17、数y kx 的图象向下平移,得到一次函数y kxb 的图象,它与y轴 交于点 C,连接 AC,BC,所围成的ABC的面积为 10,求b的值. 33如图,一次函数 1 2 2 yx 的图象与反比例函数(0) k yk x 的图象交于 ( ,3),A mB两点 (1)求反比例函数的解析式及点 B 的坐标; (2)设直线 AB 分别与 x 轴、y 轴交于 C、D 两点,连接 OA、OB,点 P 在线段 AB 上, 且2 AOPBOC SS ,求点 P 的坐标 第 22页,总 68页 34如图,直线 yx2(k0)与 y 轴交于点 A,与双曲线 y k x 在第一象限内交于点 B(3,b),在第三象限
18、内交于点 C (1)求双曲线的解析式; (2)直接写出不等式 x2 k x 的解集; (3)若 ODAB,在第一象限交双曲线于点 D,连接 AD,求 SAOD 35冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验在气温较低 第 23页,总 68页 时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温 度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的 温度 y()与时间 x(h)之间的函数关系,其中线段 AB,BC 表示恒温系统开启阶段, 双曲线的一部分 CD 表示恒温系统关闭阶段 请根据图中信息解答下列问题: (1)求这天的温度
19、y 与时间 x(0 x24)的函数关系式; (2)若大棚栽种某种蔬菜,温度低于 10时会受到伤害问若栽种这种蔬菜,恒温系 统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害? 36一次函数 yx+3 与反比例函数 y 4 x 有两个交点 A 和 B 求: (1)点 A 和点 B 的坐标; (2)ABO 的面积 第 24页,总 68页 37如图,在平面直角坐标系xOy中,一次函数1yx与 x 轴交于点 C,与反比例 函数(0) k yk x 交于点(2,)Am和点 B (1)求反比例函数表达式及点 B 的坐标; (2)点 P 是 x 轴上的一点,若PAB的面积是 6,求点 P 的坐标
20、第 25页,总 68页 38如图,已知一次函数 1 ykxb的图象与 x 轴相交于点 A 反比例函数 2 m y x 相交 于 5 ( 1,5), 2 BCn 两点. (1)利用图中条件,求反比例函数和一次函数的解析式; (2)连接 OB,OC,求BOC的面积. 39如图,已知点 (4, )Aa,( 10, 4)B 是一次函数y kxb 图象与反比例函数 m y x 图象的交点,且一次函数与 x 轴交于 C 点. 第 26页,总 68页 (1)求该反比例函数和一次函数的解析式; (2)连接 AO,求AOB的面积; (3)在 y 轴上有一点 P,使得 AOPAOC SS ,求出点 P 的坐标.
21、40 如图, 一次函数(0)ykxb k与反比例函数(0) a ya x 的图象在第一象限交 于 A,B 两点,A 点的坐标为( ,6)m,B 点的坐标为(2,3),连接OA,过 B 作BCy 轴,垂足为 C (1)求一次函数和反比例函数的表达式; 第 27页,总 68页 (2)在射线CB上是否存在一点 D,使得AOD是直角三角形,求出所有可能的 D 点 坐标 41如图,已知三角形OAB的顶点 B 在 x 轴的负半轴上,ABOB,点 A 的坐标为 ( 4,2) ) ,双曲线 k y(k0) x 的一支经过OA边的中点 C,且与AB相交于点 D (1)求此双曲线的函数表达式; (2)连结OD,求
22、AOD的面积. 42在平面直角坐标系xOy中,直线(0)ykxb k与双曲线 m y(m0 ) x 相交于 A,B两点,点A坐标为(3,2),点B坐标为(n,3). 第 28页,总 68页 (1)求一次函数和反比例函数的表达式; (2)如果点P是x轴上一点,且 ABP 的面积是 5,求点P的坐标. (3)利用函数图象直接写出关于 x 的不等式 m kxb x 的解集 43 在平面直角坐标系 xOy 中, 反比例函数(0) k yx x 的图象和ABC都在第一象限 内, 5 2 ABAC,/BCx轴,且4BC ,点A的坐标为(3,5) (1)若反比例函数(0) k yx x 的图象经过点 B,求
23、此反比例函数的解析式; (2)若将ABC向下平移m(m0)个单位长度,A,C两点的对应点同时落在反 比例函数图象上,求m的值 第 29页,总 68页 44如图,一次函数 yx+m 的图象与反比例函数 y k x 的图象交于 A,B 两点,且与 x 轴交于点 C,点 A 的坐标为(2,1) (1)求一次函数和反比例函数的解析式; (2)求点 C 的坐标; (3)结合图象直接写出不等式 0 x+m k x 的解集 45如图,一次函数 y1kx+2 的图象与 y 轴交于点 C,与反比例函数 y2 m x 的图象交 于 A、B 两点,点 B 的横坐标为2,SAOC1,tanAOC 1 4 第 30页,
24、总 68页 (1)求一次函数与反比例函数的解析式; (2)根据图象直接写出 kx+2 m x 0 时自变量 x 的取值范围 46如图,在直角坐标系中,矩形OABC的顶点O与原点重合,A、C分别在坐标轴 上,2OA ,4OC ,直线 1 1 3 2 yx 交AB,BC分别于点M,N,反比例 函数 2 k y x 的图象经过点M,N (1)求反比例函数的解析式; (2)直接写出当 12 yy时,x的取值范围; 第 31页,总 68页 (3)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标 47如图,在平面直角坐标系xOy中,直线(0)ykxb k与双曲线 6 y x 相交于点
25、 ( ,3)A m,( 6, )Bn,与x轴交于点C (1)求直线(0)ykxb k的解析式; (2)若点P在x轴上,且 3 2 ACPBOC SS ,求点P的坐标 第 32页,总 68页 48如图,一次函数(0)ycxb a的图象与反比例函数 k y x (0k )的图象在 第一象限交于点 A,B,且该一次函数的图象与 y 轴正半轴交于点 C,过 A,B 分别作 y 轴的垂线,垂足分别为 E,D,且2 BOD S已知 A(m,1) ,AE4BD (1)填空:m=;k=; (2)求 B 点的坐标和一次函数的解析式; (3)将直线 AB 向下平移 m(m0)个单位,使它与反比例函数图象有唯一交点
展开阅读全文