2021年全国新高考Ⅰ卷数学试题(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年全国新高考Ⅰ卷数学试题(解析版).doc》由用户(青草)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 全国 新高 数学试题 解析 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、20212021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 数学数学 一一 选择题:本题共选择题:本题共 8 8 小题,每小题小题,每小题 5 5 分,共分,共 4040 分分. .在每小题给出的四个选项中,只有一项是在每小题给出的四个选项中,只有一项是 符合题目要求的符合题目要求的. . 1. 设集合24Axx ,2,3,4,5B ,则AB () A. 2B.2,3C.3,4D.2,3,4 【答案】B 【解析】 【分析】利用交集的定义可求AB. 【详解】由题设有 2,3AB , 故选:B . 2. 已知 2 iz ,则 iz z () A.62iB.42iC.62iD.4
2、2i 【答案】C 【解析】 【分析】利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为2zi,故 2zi ,故22262z ziiii 故选:C. 3. 已知圆锥的底面半径为 2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2B. 2 2 C.4D. 4 2 【答案】B 【解析】 【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求. 【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则 22l ,解得 2 2l . 故选:B. 4. 下列区间中,函数 7sin 6 fxx 单调递增的区间是() A.0, 2 B., 2 C. 3
3、, 2 D. 3 ,2 2 【答案】A 【解析】 【分析】解不等式22 262 kxkkZ ,利用赋值法可得出结论. 【详解】因为函数sinyx的单调递增区间为 2 2,2 2 kkkZ , 对于函数 7sin 6 fxx ,由22 262 kxkkZ , 解得 2 22 33 kxkkZ , 取0k ,可得函数 fx的一个单调递增区间为 2 , 33 , 则 2 0, 233 , 2 , 233 ,A 选项满足条件,B 不满足条件; 取1k ,可得函数 fx的一个单调递增区间为 58 , 33 , 32 , 233 且 358 , 233 , 358 ,2, 233 ,CD 选项均不满足条件
4、. 故选:A. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成sinyAx形式,再求 sinyAx的单调区间,只需把 x 看作一个整体代入sinyx的相应单调区间内即可,注意 要先把化为正数 5. 已知 1 F, 2 F是椭圆C: 22 1 94 xy 的两个焦点,点M在C上,则 12 MFMF的最大值为() A. 13B. 12C. 9D. 6 【答案】C 【解析】 【 分 析 】 本 题 通 过 利 用 椭 圆 定 义 得 到 12 26MFMFa, 借 助 基 本 不 等 式 2 12 12 2 MFMF MFMF 即可得到答案 【详解】由题, 22 9,4ab,则 12
5、 26MFMFa, 所以 2 12 12 9 2 MFMF MFMF (当且仅当 12 3MFMF时,等号成立) 故选:C 【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到 6. 若tan2 ,则 sin1 sin2 sincos () A. 6 5 B. 2 5 C. 2 5 D. 6 5 【答案】C 【解析】 【分析】将式子进行齐次化处理,代入tan2 即可得到结果 【详解】将式子进行齐次化处理得: 22 sinsincos2sin cos sin1 sin2 sinsincos sincossincos 2 222 sinsincostantan4 22 sin
6、cos1 tan1 45 故选:C 【点睛】易错点睛:本题如果利用tan2 ,求出sin ,cos的值,可能还需要分象限讨论其正负,通 过齐次化处理,可以避开了这一讨论 7. 若过点, a b可以作曲线exy 的两条切线,则() A.eb a B.ea b C.0 eba D.0 eab 【答案】D 【解析】 【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果 【详解】在曲线 x ye上任取一点, t P t e,对函数 x ye求导得exy , 所以,曲线 x ye在点P处的切线方程为 tt yeext,即1 tt ye xt e, 由题意可知,点, a
7、 b在直线1 tt ye xt e上,可得11 ttt baet eat e , 令 1 t f tat e ,则 t ftat e. 当ta时, 0ft ,此时函数 f t单调递增, 当ta时, 0ft ,此时函数 f t单调递减, 所以, max a f tf ae, 由题意可知,直线yb与曲线 yf t的图象有两个交点,则 max a bf te, 当1ta时, 0f t ,当1ta时, 0f t ,作出函数 f t的图象如下图所示: 由图可知,当0 a be 时,直线yb与曲线 yf t的图象有两个交点. 故选:D. 【点睛】数形结合是解决数学问题常用且有效的方法 8. 有 6 个相同
8、的球,分别标有数字 1,2,3,4,5,6,从中有放回的随机取两次,每次取 1 个球,甲表示 事件“第一次取出的球的数字是 1” ,乙表示事件“第二次取出的球的数字是 2” ,丙表示事件“两次取出的 球的数字之和是 8” ,丁表示事件“两次取出的球的数字之和是 7” ,则() A. 甲与丙相互独立B. 甲与丁相互独立 C. 乙与丙相互独立D. 丙与丁相互独立 【答案】B 【解析】 【分析】根据独立事件概率关系逐一判断 【详解】 11561 ( )()()() 6636366 PPPP甲,乙,丙,丁, 1 ()0( ) ()()( ) () 36 PPPPPP甲丙甲丙 ,甲丁甲丁 , 1 ()(
9、) ()()0() () 36 PPPPPP乙丙乙丙 ,丙丁丁丙 , 故选:B 【点睛】判断事件,A B是否独立,先计算对应概率,再判断( ) ( )()P A P BP AB是否成立 二二 选择题:本题共选择题:本题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分分. .在每小题给出的选项中,有多项符合题目在每小题给出的选项中,有多项符合题目 要求要求. .全部选对的得全部选对的得 5 5 分,部分选对的得分,部分选对的得 2 2 分,有选错的得分,有选错的得 0 0 分分. . 9. 有一组样本数据 1 x, 2 x, n x,由这组数据得到新样本数据 1 y, 2
10、 y, n y,其中 ii yxc(1,2, ),in c为非零常数,则() A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同 C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同 【答案】CD 【解析】 【分析】A、C 利用两组数据的线性关系有( )( )E yE xc、( )( )D yD x,即可判断正误;根据中位数、 极差的定义,结合已知线性关系可判断 B、D 的正误. 【详解】A:( )()( )E yE xcE xc且0c ,故平均数不相同,错误; B:若第一组中位数为 i x,则第二组的中位数为 ii yxc,显然不相同,错误; C:( )(
11、)( )( )D yD xD cD x,故方差相同,正确; D:由极差的定义知:若第一组的极差为 maxmin xx,则第二组的极差为 maxminmaxminmaxmin ()()yyxcxcxx,故极差相同,正确; 故选:CD 10. 已知O为坐标原点, 点 1 cos ,sinP, 2 cos, sinP, 3 cos,sinP,()1,0A, 则() A. 12 OPOP B. 12 APAP C. 3 12 OA OPOP OP D. 123 OA OPOP OP 【答案】AC 【解析】 【分析】A、B 写出 1 OP , 2 OP 、 1 AP uuu r , 2 AP uuu r
12、 的坐标,利用坐标公式求模,即可判断正误;C、D 根据向量的 坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【 详 解 】 A : 1 (cos,sin)OP , 2 (cos, sin)OP , 所 以 22 1 |cossin1OP , 22 2 |(cos)( sin)1OP ,故 12 | |OPOP ,正确; B: 1 (cos1,sin)AP , 2 (cos1, sin)AP ,所以 22222 1 |(cos1)sincos2cos1 sin2(1 cos)4sin2|sin| 22 AP , 同理 22 2 |(cos1)sin2|sin| 2 AP ,故
13、 12 |,|APAP 不一定相等,错误; C:由题意得: 3 1 cos()0 sin()cos()OA OP , 12 coscossin( sin)cos()OP OP ,正确; D:由题意得: 1 1 cos0 sincosOA OP , 23 coscos()( sin) sin()OP OP 22 coscossinsincossinsincoscossin coscos2sinsin2cos(2 ),错误; 故选:AC 11. 已知点P在圆 22 5516xy上,点4,0A、0,2B,则() A. 点P到直线AB的距离小于10 B. 点P到直线AB的距离大于2 C. 当PBA最小
14、时,3 2PB D. 当PBA最大时,3 2PB 【答案】ACD 【解析】 【分析】计算出圆心到直线AB的距离,可得出点P到直线AB的距离的取值范围,可判断 AB 选项的正误; 分析可知,当PBA最大或最小时,PB与圆M相切,利用勾股定理可判断 CD 选项的正误. 【详解】圆 22 5516xy的圆心为5,5M,半径为4, 直线AB的方程为1 42 xy ,即240 xy, 圆心M到直线AB的距离为 22 52 541111 5 4 55 12 , 所以,点P到直线AB的距离的最小值为11 5 42 5 ,最大值为11 5 410 5 ,A 选项正确,B 选项错 误; 如下图所示: 当PBA最
15、大或最小时,PB与圆M相切,连接MP、BM,可知PMPB, 22 052534BM ,4MP ,由勾股定理可得 22 3 2BPBMMP ,CD 选项 正确. 故选:ACD. 【点睛】结论点睛:若直线l与半径为r的圆C相离,圆心C到直线l的距离为d,则圆C上一点P到直线 l的距离的取值范围是,dr dr. 12. 在正三棱柱 111 ABCABC中, 1 1ABAA,点P满足 1 BPBCBB ,其中0,1, 0,1,则() A. 当1时, 1 AB P的周长为定值 B. 当1时,三棱锥 1 PABC的体积为定值 C. 当 1 2 时,有且仅有一个点P,使得 1 APBP D. 当 1 2 时
16、,有且仅有一个点P,使得 1 AB 平面 1 AB P 【答案】BD 【解析】 【分析】对于 A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标; 对于 B,将P点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于 C,考虑借助向量的平移将P点轨迹确定,进而考虑建立合适的直角坐标系来求解P点的个数; 对于 D,考虑借助向量的平移将P点轨迹确定,进而考虑建立合适的直角坐标系来求解P点的个数 【详解】 易知,点P在矩形 11 BCC B内部(含边界) 对于 A,当1时, 11 =BPBCBBBCCC ,即此时P线段 1 CC, 1 AB P周长不是定值,故 A 错误;
17、对于 B, 当1时, 1111 =BPBCBBBBBC , 故此时P点轨迹为线段 11 BC, 而 11/ BCBC, 11/ BC 平面 1 ABC,则有P到平面 1 ABC的距离为定值,所以其体积为定值,故 B 正确 对于 C,当 1 2 时, 1 1 2 BPBCBB ,取BC, 11 BC中点分别为Q,H,则BP BQQH ,所以 P点轨迹为线段QH, 不妨建系解决, 建立空间直角坐标系如图, 1 3 ,0,1 2 A ,0,0P,, 1 0,0 2 B , 则 1 3 ,0,1 2 AP , 1 0, 2 BP ,10 ,所以0或1故,H Q均满足,故 C 错误; 对于 D,当 1
18、2 时, 1 1 2 BPBCBB ,取 1 BB, 1 CC中点为,M NBP BMMN ,所以P点轨 迹为线段MN设 0 1 0, 2 Py ,因为 3 0,0 2 A ,所以 0 31 , 22 APy , 1 3 1 , 1 22 AB , 所以 00 3111 0 4222 yy,此时P与N重合,故 D 正确 故选:BD 【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内 三三 填空题:本题共填空题:本题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分分. . 13. 已知函数 3 22 xx xaf x 是偶函数,则a _. 【答案】1
19、 【解析】 【分析】利用偶函数的定义可求参数a的值. 【详解】因为 3 22 xx xaf x ,故 3 22 xx fxxa , 因为 fx为偶函数,故 fxf x, 时 33 2222 xxxx xaxa ,整理得到 12 +2=0 xx a , 故1a , 故答案为:1 14. 已知O为坐标原点,抛物线C: 2 2ypx(0p )的焦点为F,P为C上一点,PF与x轴垂直,Q 为x轴上一点,且PQOP,若6FQ ,则C的准线方程为_. 【答案】 3 2 x 【解析】 【分析】先用坐标表示PQ,再根据向量垂直坐标表示列方程,解得p,即得结果. 【详解】不妨设(, )(6,0),(6,) 22
20、 pp PpQPQp uuu r 因为PQOP,所以 2 6003 2 p ppp QC的准线方程为 3 2 x 故答案为: 3 2 x 【点睛】利用向量数量积处理垂直关系是本题关键. 15. 函数 212lnf xxx 的最小值为_. 【答案】1 【解析】 【分析】由解析式知 ( )f x定义域为(0,),讨论 1 0 2 x、 1 1 2 x、1x ,并结合导数研究的单调 性,即可求 ( )f x最小值. 【详解】由题设知:( ) |21| 2lnf xxx定义域为(0,), 当 1 0 2 x时,( )1 22lnf xxx ,此时( )f x单调递减; 当 1 1 2 x时,( )21
展开阅读全文