书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型2021年全国高考甲卷文科数学试题(及答案).doc

  • 上传人(卖家):副主任
  • 文档编号:1485256
  • 上传时间:2021-06-15
  • 格式:DOC
  • 页数:12
  • 大小:1.30MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021年全国高考甲卷文科数学试题(及答案).doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 全国 高考 文科 数学试题 答案 下载 _历年真题_高考专区_数学_高中
    资源描述:

    1、20212021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 文科数学文科数学 一一 选择题选择题:本题共本题共 1212 小题小题,每小题每小题 5 5 分分,共共 6060 分分. .在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是只有一项是 符合题目要求的符合题目要求的. . 1. 设集合1,3,5,7,9 ,27MNxx,则MN () A.7,9B.5,7,9C.3,5,7,9D.1,3,5,7,9 【答案】B 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得 到如下频率分布直方图: 根据此频率分布直方图,下

    2、面结论中不正确的是() A. 该地农户家庭年收入低于 4.5 万元的农户比率估计为 6% B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10% C. 估计该地农户家庭年收入的平均值不超过 6.5 万元 D. 估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间 【答案】C 3. 已知 2 (1)32izi,则z () A. 3 1 2 i B. 3 1 2 i C. 3 2 iD. 3 2 i 【答案】B 4. 下列函数中是增函数的为() A. f xx B. 2 3 x fx C. 2 f xxD. 3 f xx 【答案】D 5. 点3,0到双曲线

    3、22 1 169 xy 的一条渐近线的距离为() A. 9 5 B. 8 5 C. 6 5 D. 4 5 【答案】A 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录 视力数据,五分记录法的数据L和小数记录表的数据V的满足5lgLV已知某同学视力的五分记录法 的数据为 4.9,则其视力的小数记录法的数据为() (1010 1.259 ) A. 1.5B. 1.2C. 0.8D. 0.6 【答案】C 7. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G该正方体截去三棱锥A EFG后,所得多 面体的三视图中,正视图如图所示,则相应的侧视图是(

    4、) A.B.C.D. 【答案】D 8. 在ABC中,已知120B , 19AC ,2AB ,则BC () A. 1B. 2 C. 5 D. 3 【答案】D 9. 记 n S为等比数列 n a的前n项和.若 2 4S , 4 6S ,则 6 S () A. 7B. 8C. 9D. 10 【答案】A 10. 将 3 个 1 和 2 个 0 随机排成一行,则 2 个 0 不相邻的概率为() A. 0.3B. 0.5C. 0.6D. 0.8 【答案】C 11. 若 cos 0,tan2 22sin ,则tan() A. 15 15 B. 5 5 C. 5 3 D. 15 3 12. 设 fx是定义域为

    5、R R的奇函数,且1fxfx.若 11 33 f ,则 5 3 f () A. 5 3 B. 1 3 C. 1 3 D. 5 3 【答案】C 二二 填空题:本题共填空题:本题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分分. . 13. 若向量, a b 满足3,5,1aaba b ,则b _. 【答案】3 2 14. 已知一个圆锥的底面半径为 6,其体积为30则该圆锥的侧面积为_. 【答案】39 15. 已知函数 2cosf xx的部分图像如图所示,则 2 f _. 【答案】 3 16. 已知 12 ,F F为椭圆C: 22 1 164 xy 的两个焦点,P,Q为C

    6、上关于坐标原点对称的两点, 且 12 PQFF, 则四边形 12 PFQF的面积为_ 【答案】8 三三 解答题解答题:共共 7070 分分. .解答应写出交字说明解答应写出交字说明 证明过程程或演算步骤证明过程程或演算步骤,第第 17211721 题为必考题题为必考题,每每 个试题考生都必须作答个试题考生都必须作答. .第第 2222 2323 题为选考题,考生根据要求作答题为选考题,考生根据要求作答. . ( (一一) )必考题:共必考题:共 6060 分分. . 17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分 别用两台机床各生产了 200

    7、件产品,产品的质量情况统计如下表: 一级品二级品合计 甲机床15050200 乙机床12080200 合计270130400 (1)甲机床、乙机床生产的产品中一级品的频率分别是多少? (2)能否有 99%的把握认为甲机床的产品质量与乙机床的产品质量有差异? 附: 2 2 () ()()()() n adbc K a b c d a c b d 2 P Kk0.0500.0100.001 k3.8416.63510.828 【详解】 (1)甲机床生产的产品中的一级品的频率为 150 75% 200 , 乙机床生产的产品中的一级品的频率为 120 60% 200 . (2) 2 2 400 150

    8、 80 120 50400 106.635 270 130 200 20039 K , 故能有 99%的把握认为甲机床的产品与乙机床的产品质量有差异. 18. 记 n S为数列 n a的前n项和,已知 21 0,3 n aaa,且数列 n S是等差数列,证明: n a是等差数 列. 【详解】数列 n S是等差数列,设公差为d 212111 aaaaSS 111 (1) n Sanaan,()n N 1 2 n Sa n,()n N 当2n 时, 2 2 11111 12 nnn aSSa na na na 当1n 时, 111 21=aaa ,满足 11 2 n aana, n a的通项公式为

    9、 11 2 n aana,()n N 111111 221=2 nn aaa naa naa n a是等差数列. 19. 已知直三棱柱 111 ABCABC中,侧面 11 AAB B为正方形,2ABBC,E,F分别为AC和 1 CC的中 点, 11 BFAB. (1)求三棱锥FEBC的体积; (2)已知D为棱 11 AB上的点,证明:BF DE. 【详解】(1)如图所示,连结AF, 由题意可得: 22 4 15BFBCCF , 由于ABBB1,BCAB, 1 BBBCB,故AB 平面 11 BCC B, 而BF 平面 11 BCC B,故AB BF, 从而有 22 453AFABBF , 从而

    10、 22 9 12 2ACAFCF , 则 222, ABBCACABBC,ABC为等腰直角三角形, 111 2 21 222 BCEABC Ss , 111 1 1 333 F EBCBCE VSCF . (2)由(1)的结论可将几何体补形为一个棱长为 2 的正方体 1111 ABCMABC M,如图所示,取棱,AM BC的 中点,H G,连结 11 ,AH HG GB, 正方形 11 BCC B中,,G F为中点,则 1 BFBG, 又 111111 ,BFAB ABBGB, 故BF 平面 11 ABGH,而DE 平面 11 ABGH, 从而BF DE. 20. 设函数 22 ( )3ln1

    11、f xa xaxx,其中0a . (1)讨论 fx的单调性; (2)若 yf x的图像与x轴没有公共点,求a的取值范围. 【详解】 (1)函数的定义域为0,, 又 23 (1) ( ) axax fx x , 因为0,0ax,故230ax, 当 1 0 x a 时,( )0fx ;当 1 x a 时,( )0fx ; 所以 fx的减区间为 1 0, a ,增区间为 1 ,+ a . (2)因为 2 110faa 且 yf x的图与x轴没有公共点, 所以 yf x的图象在x轴的上方, 由(1)中函数的单调性可得 min 11 33ln33lnf xfa aa , 故33ln0a即 1 a e .

    12、 21. 抛物线C的顶点为坐标原点O焦点在x轴上,直线l:1x 交C于P,Q两点,且OPOQ已知 点2,0M,且M与l相切 (1)求C,M的方程; (2)设 123 ,A A A是C上的三个点,直线 12 A A, 13 A A均与M相切判断直线 23 A A与M的位置关系, 并说明理由 【详解】 (1)依题意设抛物线 2 00 :2(0), (1,),(1,)C ypx pPyQy, 2 0 ,1120,21OPOQOP OQypp , 所以抛物线C的方程为 2 yx, (0,2),MM与1x 相切,所以半径为1, 所以M的方程为 22 (2)1xy; (2)设 111222333 (),(

    13、,),(,)A x yA xyA xy 若 12 A A斜率不存在,则 12 A A方程为1x 或3x , 若 12 A A方程为1x ,根据对称性不妨设 1(1,1) A, 则过 1 A与圆M相切的另一条直线方程为1y , 此时该直线与抛物线只有一个交点,即不存在 3 A,不合题意; 若 12 A A方程为3x ,根据对称性不妨设 12 (3, 3),(3,3),AA 则过 1 A与圆M相切的直线 13 A A为 3 3(3) 3 yx , 又 1 3 13 3 1313 3 113 ,0 33 A A yy ky xxyyy , 33 0,(0,0)xA,此时直线 1323 ,A A A

    14、A关于x轴对称, 所以直线 23 A A与圆M相切; 若直线 121323 ,A A A A A A斜率均存在, 则 1 21 323 121323 111 , A AA AA A kkk yyyyyy , 所以直线 12 A A方程为 11 12 1 yyxx yy , 整理得 1212 ()0 xyyyy y, 同理直线 13 A A的方程为 1313 ()0 xyyyy y, 直线 23 A A的方程为 2323 ()0 xyyyy y, 12 A A与圆M相切, 12 2 12 |2| 1 1() y y yy 整理得 222 12121 (1)230yyy yy , 13 A A与圆

    15、M相切,同理 222 13131 (1)230yyy yy 所以 23 ,yy为方程 222 111 (1)230yyy yy 的两根, 2 11 2323 22 11 23 , 11 yy yyyy yy , M到直线 23 A A的距离为: 2 1 2 231 2 2 1 23 2 1 3 |2| |2|1 2 1() 1() 1 y y yy y yy y 22 11 2 222 1 11 |1|1 1 1 (1)4 yy y yy , 所以直线 23 A A与圆M相切; 综上若直线 1213 ,A A A A与圆M相切,则直线 23 A A与圆M相切. ( (二二) )选考题选考题:共

    16、共 1010 分分. .请考生在第请考生在第 2222 2323 题中任选一题作答题中任选一题作答. .如果多做如果多做,则按所做的第一题计则按所做的第一题计 分分. . 选修选修 4-44-4:坐标系与参数方程:坐标系与参数方程 22. 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 2 2cos (1)将C的极坐标方程化为直角坐标方程; (2)设点A的直角坐标为1,0,M为C上的动点,点P满足 2APAM ,写出的轨迹 1 C的参数方程, 并判断C与 1 C是否有公共点 【详解】 (1)由曲线 C 的极坐标方程2 2cos可得 2 2 2 cos

    17、, 将cos ,sinxy代入可得 22 2 2xyx,即 2 2 22xy, 即曲线C的直角坐标方程为 2 2 22xy; (2)设,P x y,设22cos ,2sinM 2APAM , 1,222cos1,2sin22cos2,2sinxy, 则 122cos2 2sin x y ,即 322cos 2sin x y , 故P的轨迹 1 C的参数方程为 322cos 2sin x y (为参数) 曲线C的圆心为 2,0,半径为 2,曲线1 C的圆心为 32,0,半径为 2, 则圆心距为3 2 2 , 32 222 ,两圆内含, 故曲线C与 1 C没有公共点. 选修选修 4-54-5:不等

    18、式选讲:不等式选讲 23. 已知函数( )2 , ( )2321f xxg xxx (1)画出 yf x和 yg x的图像; (2)若 f xag x,求a的取值范围 【详解】 (1)可得 2,2 ( )2 2,2 x x f xx xx ,画出图像如下: 3 4, 2 31 ( )232142, 22 1 4, 2 x g xxxxx x ,画出函数图像如下: (2)() |2|f xaxa, 如图,在同一个坐标系里画出 ,f xg x图像, yf xa是 yf x平移了a个单位得到, 则要使()( )f xag x,需将 yf x向左平移,即0a , 当yf xa过 1 ,4 2 A 时, 1 |2| 4 2 a,解得 11 2 a 或 5 2 (舍去) , 则数形结合可得需至少将 yf x向左平移 11 2 个单位, 11 2 a.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年全国高考甲卷文科数学试题(及答案).doc
    链接地址:https://www.163wenku.com/p-1485256.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库