2021全国高考甲卷(文科)数学(答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021全国高考甲卷(文科)数学(答案).docx》由用户(dong881000)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021全国高考 甲卷 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、第 1 页 共 19 页 绝密启用前 20212021 年年 全国全国 高考高考 文科数学文科数学(甲卷甲卷)答案答案 注意事项:注意事项: 1.答卷前,考生务必将自己的姓名答卷前,考生务必将自己的姓名 准考证号填写在答题卡上准考证号填写在答题卡上. 2.回答选择题时回答选择题时,选出每小题答案后选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑用铅笔把题卡上对应题目的答案标号涂黑.如需改动如需改动,用皮擦干净用皮擦干净 后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后
2、,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一一 选择题:本题共选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分分.在每小题给出的四个选项中,只有一项是符合题目在每小题给出的四个选项中,只有一项是符合题目 要求的要求的. 1. 设集合 1,3,5,7,9 ,27MNxx,则MN () A. 7,9 B.5,7,9C. 3,5,7,9 D. 1,3,5,7,9 【答案】B 【解析】 【分析】求出集合N后可求MN. 【详解】 7 , 2 N ,故5,7,9MN, 故选:B. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年
3、收入的调查数据整理得到如下频率 分布直方图: 根据此频率分布直方图,下面结论中不正确的是() 第 2 页 共 19 页 A. 该地农户家庭年收入低于 4.5 万元的农户比率估计为 6% B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10% C. 估计该地农户家庭年收入的平均值不超过 6.5 万元 D. 估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间 【答案】C 【解析】 【分析】根据直方图的意义直接计算相应范围内的频率,即可判定 ABD,以各组的中间值作为代表乘以相应的频率,然 后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即
4、可判定 C. 【详解】因为频率直方图中的组距为 1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的 相应比率的估计值. 该地农户家庭年收入低于 4.5 万元的农户的比率估计值为0.020.040.066%,故 A 正确; 该地农户家庭年收入不低于 10.5 万元的农户比率估计值为0.040.02 30.1010% ,故 B 正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.20 20.6464%50%,故D正 确; 该地农户家庭年收入的平均值的估计值为 3 0.024 0.045 0.106 0.147 0.208 0.209 0.
5、10 10 0.10 11 0.04 12 0.02 13 0.02 14 0.027.68 (万元),超过 6.5 万元, 故 C 错误. 综上,给出结论中不正确的是 C. 故选:C. 【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值, 样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的 频率等于 频率 组距 组距 . 3. 已知 2 (1)32izi,则z () A. 3 1 2 i B. 3 1 2 i C. 3 2 iD. 3 2 i 【答案】B 第 3 页 共 19 页 【解析】
6、 【分析】由已知得 32 2 i z i ,根据复数除法运算法则,即可求解. 【详解】 2 (1)232izizi , 32(32 )233 1 2222 iiii zi ii i . 故选:B. 4. 下列函数中是增函数的为() A. f xx B. 2 3 x fx C. 2 f xxD. 3 f xx 【答案】D 【解析】 【分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【详解】对于 A, f xx 为R上的减函数,不合题意,舍. 对于 B, 2 3 x fx 为R上的减函数,不合题意,舍. 对于 C, 2 f xx在,0为减函数,不合题意,舍. 对于 D, 3 f xx为R上
7、的增函数,符合题意, 故选:D. 5. 点3,0到双曲线 22 1 169 xy 的一条渐近线的距离为() A. 9 5 B. 8 5 C. 6 5 D. 4 5 【答案】A 【解析】 【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可. 【详解】由题意可知,双曲线的渐近线方程为: 22 0 169 xy ,即3 40 xy, 结合对称性,不妨考虑点3,0到直线340 xy的距离: 909 59 16 d . 故选:A. 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据, 第 4 页 共 19 页 五分记录法的
8、数据 L 和小数记录表的数据 V 的满足5lgLV已知某同学视力的五分记录法的数据为 4.9,则其视 力的小数记录法的数据为() (1010 1.259 ) A. 1.5B. 1.2C. 0.8D. 0.6 【答案】C 【解析】 【分析】根据,L V关系,当4.9L 时,求出lgV,再用指数表示V,即可求解. 【详解】由5lgLV,当4.9L 时,lg0.1V , 则 1 0.1 10 10 11 10100.8 1.25910 V . 故选:C. 7. 在一个正方体中,过顶点 A 的三条棱的中点分别为 E,F,G该正方体截去三棱锥A EFG后,所得多面体的三视 图中,正视图如图所示,则相应的
9、侧视图是( ) A.B.C.D. 【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示, 第 5 页 共 19 页 所以其侧视图为 故选:D 8. 在ABC中,已知 120B , 19AC ,2AB ,则BC () A. 1B.2 C. 5 D. 3 【答案】D 【解析】 【分析】利用余弦定理得到关于 BC 长度的方程,解方程即可求得边长. 【详解】设,ABc ACb BCa, 结合余弦定理: 222 2cosbacacB 可得: 2 194 2cos120aa , 即: 2 2150aa ,解得
10、:3a (5a 舍去) , 故3BC . 故选:D. 【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角; (2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形 9. 记 n S为等比数列 n a的前 n 项和.若 2 4S , 4 6S ,则 6 S () A. 7B. 8C. 9D. 10 【答案】A 【解析】 【分析】根据题目条件可得 2 S, 42 SS, 64 SS成等比数列,从而求出 64 1SS,进一步求出答案. 【详解】 n S为等比数列 n a的前 n 项和, 2 S, 42 SS, 64 SS成等比数列
11、 2 4S , 42 642SS 第 6 页 共 19 页 64 1SS, 64 11 67SS . 故选:A. 10. 将 3 个 1 和 2 个 0 随机排成一行,则 2 个 0 不相邻的概率为() A. 0.3B. 0.5C. 0.6D. 0.8 【答案】C 【解析】 【分析】利用古典概型的概率公式可求概率. 【详解】解:将 3 个 1 和 2 个 0 随机排成一行,可以是: 00111,01011,01101,01110,10011,10101,10110,11001,11010,11100, 共 10 种排法, 其中 2 个 0 不相邻的排列方法为: 01011,01101,0111
12、0,10101,10110,11010, 共 6 种方法, 故 2 个 0 不相邻的概率为 6 =0.6 10 , 故选:C. 11. 若 cos 0,tan2 22sin ,则tan() A. 15 15 B. 5 5 C. 5 3 D. 15 3 【答案】A 【解析】 【分析】由二倍角公式可得 2 sin22sincos tan2 cos21 2sin ,再结合已知可求得 1 sin 4 ,利用同角三角函数的基 本关系即可求解. 【详解】 cos tan2 2sin 2 sin22sincoscos tan2 cos21 2sin2sin , 0, 2 ,cos0, 2 2sin1 1 2
13、sin2sin ,解得 1 sin 4 , 第 7 页 共 19 页 2 15 cos1 sin 4 , sin15 tan cos15 . 故选:A. 【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin. 12. 设 fx是定义域为 R 的奇函数,且 1fxfx.若 11 33 f ,则 5 3 f () A. 5 3 B. 1 3 C. 1 3 D. 5 3 【答案】C 【解析】 【分析】由题意利用函数的奇偶性和函数的递推关系即可求得 5 3 f 的值. 【详解】由题意可得: 5222 1 3333 ffff , 而 21111 1 33333 ffff
14、 , 故 51 33 f . 故选:C. 【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题 的关键. 二二 填空题:本题共填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13. 若向量, a b 满足3,5,1aaba b ,则b _. 【答案】3 2 【解析】 【分析】根据题目条件,利用a b 模的平方可以得出答案 【详解】 5ab 22 22 29225ababa bb 3 2b r . 故答案为:3 2. 第 8 页 共 19 页 14. 已知一个圆锥的底面半径为 6,其体积为30则该圆锥的侧面积为_.
15、【答案】39 【解析】 【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. 【详解】 2 1 630 3 Vh 5 2 h 2 222 513 6 22 lhr 13 639 2 Srl 侧 . 故答案为:39. 15. 已知函数 2cosf xx的部分图像如图所示,则 2 f _. 【答案】 3 【解析】 第 9 页 共 19 页 【分析】首先确定函数的解析式,然后求解 2 f 的值即可. 【详解】由题意可得: 31332 ,2 41234 TT T , 当 13 12 x 时, 1313 22,2 126 xkkkZ , 令1k 可得: 6 , 据此有: 5
16、2cos 2,2cos 22cos3 62266 fxxf . 故答案为: 3 . 【点睛】已知 f(x)Acos(x)(A0,0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数 和,常用如下两种方法: (1)由 2 T 即可求出; 确定时, 若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标 x0, 则令x00(或 x0),即可求出. (2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出和,若对 A,的符 号或对的范围有要求,则可用诱导公式变换使其符合要求. 16. 已知 12 ,F F为椭圆 C: 22 1 164 xy 的
17、两个焦点,P,Q 为 C 上关于坐标原点对称的两点,且 12 PQFF,则四 边形 12 PFQF的面积为_ 【答案】8 【解析】 【分析】根据已知可得 12 PFPF,设 12 |,|PFm PFn,利用勾股定理结合8mn,求出mn,四边形 12 PFQF 面积等于mn,即可求解. 【详解】因为,P Q为C上关于坐标原点对称的两点, 且 12 | |PQFF,所以四边形 12 PFQF为矩形, 设 12 |,|PFm PFn,则 22 8,48mnmn, 所以 222 64()2482mnmmnnmn, 8mn ,即四边形 12 PFQF面积等于8. 故答案为:8. 第 10 页 共 19
展开阅读全文