人教版初中二年级数学下册课件《一次函数》小结课第1课时.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版初中二年级数学下册课件《一次函数》小结课第1课时.pptx》由用户(dong881000)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次函数 人教版 初中 年级 数学 下册 课件 一次 函数 小结 课时 下载 _二年级下册_人教版(2024)_数学_小学
- 资源描述:
-
1、2021 授课教师:红阳老师时间:2021.5.7 儿童/卡通/幼儿园/小学/课件/ PPT模板 函函 数数 知识梳理知识梳理 变量和常量变量和常量 定义定义 判断判断 方法方法 在一个变化过程中,我们称数值发生在一个变化过程中,我们称数值发生 变化的量为变量,数值始终不变的量变化的量为变量,数值始终不变的量 为常量为常量. 变化过程;变化过程; 数值是否改变数值是否改变. 知识梳理知识梳理 函数函数 概念概念 判断判断 方法方法 在一个变化过程中,如果有两个变在一个变化过程中,如果有两个变 量量x与与y,并且对于,并且对于x的每一个确定的的每一个确定的 值,值,y都有唯一确定的值与其相对应都
2、有唯一确定的值与其相对应. 一个变化过程;一个变化过程; 两个变量;两个变量; 数值对应的关系数值对应的关系. 知识梳理知识梳理 函数自变量函数自变量 的取值范围的取值范围 概念概念 判断判断 方法方法 使函数关系式有意义的自变量取 值的全体叫自变量的取值范围. 整式型;分式型;整式型;分式型;根式型;根式型; 零次型;实际问题零次型;实际问题. 知识梳理知识梳理 函数解析式和函数值函数解析式和函数值 解析式解析式 函数值函数值 用关于自变量的数学式子表示函数与自变 量之间的关系,是描述函数的常用方法, 这种式子叫做函数的解析式. 对于自变量对于自变量x在取值范围内的某个确定的在取值范围内的某
3、个确定的 值值a,函数,函数y所对应的值为所对应的值为b,b即为函数值即为函数值. 知识梳理知识梳理 函数图函数图象 定义定义 画法画法 如果把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这 些点组成的图形,就是这个函数的图象. 列表;描点;列表;描点;连线连线. 1.常量和变量常量和变量 (1)在一个变化过程中,我们称数值发生变化的量为变量,数 值始终不变的量为常量. (2)判断一个量是常量还是变量的方法 看这个量在某一变化过程中的值是否发生改变(或者说是否会 取不同的数值),若在变化过程中此量的数值不变,则此量是 常量,若此量可以取不同的数值,则此量是变量. 2.函数
4、的概念函数的概念 一般的,在一个变化过程中,如果有两个变量 x 与 y,并且对 于x的每一个确定的值,y 都有唯一确定的值与其相对应,那么 我们就说x是自变量,y 是 x 的函数,也称 y 是因变量. 3.函数自变量的取值范围函数自变量的取值范围 (1)自变量的取值范围:使函数关系式有意义的自变量取值的 全体叫自变量的取值范围. (2)整式型:等号右边是整式,自变量的取值范围是全体实 数. 分式型:等号右边的自变量在分母的位置上,自变量的取值 范围是使分母不为0的实数. 3.函数自变量的取值范围函数自变量的取值范围 (2)根式型:等号右边是开偶次方的式子,自变量的取值范 围是使根号下的式子的值
5、大于或等于0的实数. 零次型:等号右边的自变量的零次幂或负整数次幂,自变量 的取值范围是使幂的底数不为0的实数. 4.函数解析式和函数值函数解析式和函数值 (1)函数解析式 :用关于自变量的数学式子表示函数与自变 量之间的关系,是描述函数的常用方法,这种式子叫做函数的 解析式. (2)函数值:对于自变量x在取值范围内的某个确定的值 a, 函数 y 所对应的值为 b,即当 x=a 时,y=b,则 b 叫做当自变量 的值为 a 时的函数值. 5. 函数的图象及画法函数的图象及画法 (1)函数的图象:一般的,对于一个函数,如果把自变量与函 数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这 些
展开阅读全文