书签 分享 收藏 举报 版权申诉 / 3
上传文档赚钱

类型六年级下册数学教案:5 数学广角-鸽巢问题(人教版)(6).docx

  • 上传人(卖家):孙红松
  • 文档编号:1302354
  • 上传时间:2021-04-19
  • 格式:DOCX
  • 页数:3
  • 大小:17.89KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《六年级下册数学教案:5 数学广角-鸽巢问题(人教版)(6).docx》由用户(孙红松)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    六年级下册数学教案:5 数学广角鸽巢问题人教版6 六年级 下册 数学教案 数学 广角 问题 人教版 下载 _六年级下册_人教版(2024)_数学_小学
    资源描述:

    1、教师姓名教师姓名 单位名称单位名称 填写时间填写时间 学科学科 数学 年级年级/ /册册 六年级(下) 教材版本教材版本 人教版 课题名称课题名称 第五单元数学广角鸽巢原理 难点名称难点名称 难点分析难点分析 从知识角度分析为 什么难 “鸽巢问题”的理论本身并不复杂,但“鸽巢问题”的应用是千变万化的。 向学生介绍“鸽巢问题” ,使学生理解“鸽巢问题”的一般规律。经历抽屉原 理的探究过程,理解抽屉原理,灵活运用抽屉原理解决生活中的简单问题。 从学生角度分析为 什么难 理解“总有” 、 “至少” ,构建“抽屉原理”的数学模型,并对一些简单的实际 问题加以模型化。 难点教学方法难点教学方法 实验探究

    2、归纳总结补充讲解练习提高 教学环节教学环节 教学过程教学过程 导入导入 一、激趣导入一、激趣导入 师:大家玩过扑克牌吗,师:大家玩过扑克牌吗,一副扑克牌有多少张?生:生:没错有没错有 54 张。 师:师:抽掉大王、小王之后还剩下 52 张。 师: 现在有这么一则信息: 一副扑克牌(除去大小王)52 张中有四种花色, 从中任意抽取 5 张牌, 无论怎么抽,总有一种花色至少有 2 张牌。你能说明其中的道理吗? 师:其实这里蕴含了一个重要的数学原理鸽巢原理,也叫抽屉原理,今天我们一起来研 究一下。 ) 知识讲解知识讲解 (难点突破)(难点突破) 二、讲授新课二、讲授新课 师师:刚才我们玩的游戏中其实

    3、蕴含了一个重要的数学原理鸽巢原理,也叫抽屉原理(板 书:鸽巢原理-抽屉原理) 。 自主探究,构建模型自主探究,构建模型,教学例教学例 1 1,初步感知,体验方法,概括规律。,初步感知,体验方法,概括规律。 接下来请看大屏幕(出示把 4 支铅笔放进 3 个笔筒里,不管怎么放,总有一个笔筒里至少放 2 支铅笔。为什么呢?)师:这需要我们大家一起验证一下 (一)第一步:研究 4 支铅笔放进 3 个笔筒里的现象。 1小组合作探究 把 4 支铅笔放进 3 个笔筒里,请小组的同学摆摆看,在动手之前请看活动要求: 4 人为一组摆一摆,要求将铅笔全部放进去,允许某个笔筒空着。 (一人摆,一人记录,一 人汇报)

    4、 边摆边记录下来, (记录时:可以用数字记录每个杯子的铅笔数量,看看一共有几种摆法? 分析:学生活动,教师巡视指导。 (引导学生按序摆,并记录好, (强调不遗漏不重复)问关 键句的意思,总有,肯定有,至少,最少,不少于 2 个,单独听取学生的汇报,你给我汇报一下 为什么,引导说出,一共四种情况,都满足有一个笔筒里不少于两个,记录时把符合结论的圈一 圈得出结论。巡视时,引导学生找到最坏的情况,并找出它是怎样分的,引导学生说出每个笔筒 分的尽量少,也就是平均分) 2.汇报展示 生:上台边摆边说一共有四种情况,第一种至第四种(4 0 0) 、 ( 3 1 0) 、 (2 2 0 ) ( 2 1 1

    5、)(引导学生明确虽然摆放的顺序不一样,但是同一种放法) 师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。 (强调不遗(强调不遗 漏不重复)漏不重复)并说出每种符合要求的数量,从而得出结论把 4 支铅笔放进 3 个笔筒里,不管怎么放, 总有一个笔筒里至少放 2 支铅笔(教师记录) 师:你们也是这样想的吗,时间关系,我就不再叫同学上来说了,接下来我有一个问题,10 支铅笔放到 9 个笔筒里,总有一个笔筒里至少放()支铅笔,你们能很快的说出来吗,需要我们 用学具摆吗,那 20 支放到 19 个笔筒里,总有一个笔筒里至少放()支铅笔,你能摆出来吗,观 察你摆的四种情况四人小组讨论一

    6、下,怎样最快能够得到结论。 汇报汇报并小结并小结 生:找到最坏的一种情况(说明第四种是最坏的情况) 师:最坏的一种情况是怎样分的 生:尽量少分(怎样做到尽量少分呢,平均分) 师: ,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗? 生:43=11 师:能解释算式里每个数的意义吗? 生:4 表示铅笔数,3 表示笔筒数,商 1 表示平均每个笔筒放进 1 支铅笔,余数 1 表示还剩 1 支铅笔。至少数=1+1=2,也就是至少数=商+1 师小结:要想发现存在着“总有一个笔筒里一定至少有 2 支” ,先平均分,余下 1 支,不管放 在那个笔筒里,一定会出现“总有一个笔筒里一定至少有 2 支

    7、” 。 ) 师: 10 支铅笔放到 9 个笔筒里,总有一个笔筒里至少放()支铅笔,你们能很快的说出来吗。生: 109=11 10 表示铅笔数,9 表示笔筒数,商 1 表示平均每个笔筒放进 1 支铅笔,余数 1 表 示还剩 1 支铅笔。至少数=1+1=2,也就是至少数=商+1 课堂练习课堂练习 (难点巩固)(难点巩固) 三、课堂练习三、课堂练习 7 7 只鸽子飞回只鸽子飞回 5 5 个鸽舍,至少有()只鸽子要飞进同一个鸽舍里个鸽舍,至少有()只鸽子要飞进同一个鸽舍里 交流汇报 生 1:我认为至少有 3 只鸽子,因为把 7 只鸽子平均分给 5 个鸽舍,就还剩 2 只鸽 子,所以总有一个鸽舍至少有

    8、3 只鸽子。 7512,1+23。至少数=商+余数 师师:有不同意见吗? 生生 2:我认为至少有 2 只鸽子,因为把 7 只鸽子平均分给 5 个鸽舍,就还剩 2 只鸽子,我再把 这 2 只鸽子分在两个不同的鸽舍里, 所以总有一个鸽舍至少有 2 只鸽子。 7512, 1+12。 至少数=商商+1+1 师师:出现了两种不同的声音,这两位同学都是用 7512,不同点是一位同学认为是 1+1 2,另一位同学认为是 1+23。到底哪种想法正确呢?你能谈谈自己的意见吗? 生生 3:我赞同 1+12。因为余下的 2 个还要分到不同的鸽舍里,所以总有一个鸽舍至少放 2 只鸽子。 师师:你的意思是说,把这 2

    9、只鸽子怎样放?(分开放)为什么要分开放? 生生:这样能使每个鸽舍里的鸽子都尽可能地少,一定会出现“总有一个鸽舍里至少放 2 只鸽 子 师师:是呀!由于我们找的是“总有一个鸽舍里至少放几只鸽子” ,所以应该把这 2 只鸽子分别 放到不同的鸽舍里,应该是什么?(1+12。 )看来呀,先把鸽子平均分,再把余下的鸽子分开放, 这才是解决此类问题的关键。 师师:感谢刚才三位同学,给我们的课堂带来了不同的声音,使我们的认识越来越深刻,掌声 送给他们! 师师:通过上面同学的分析可以得出:把鸽子放进鸽舍里,如果平均分后有剩余,那么总有一 个鸽舍里至少放“商+1”个;如果正好分完,总有一个抽屉里至少放的鸽子只数

    10、等于商。有余数 时,至少数=商商+ +1 1,当没有余数时,当没有余数时,至少数=商商 师师:其实,鸽舍(抽屉)里不仅可以放鸽子,还可以放其他的物体呢?这句话就变成了:把物 体放进鸽舍(抽屉)里,如果平均分后有剩余,那么总有一个抽屉里至少放“商+1”个;如果正好 分完,总有一个鸽舍(抽屉)里至少放的鸽子个数等于商。我们一起自豪地读一读。 小结小结 四、小结四、小结 师师:其实,我们发现的这个规律,就是这节课所要研究的鸽巢原理,也叫“抽屉原理” 。它最 早是由 19 世纪德国数学家狄里克雷提出来的,所以这个原理又叫“狄里克雷原理” 。 师师:还记得课前的那一则信息吗?你现在能利用抽屉原理解释了吗? 把 5 张牌看作 5 个待分的物体,把 4 种花色看作 4 个抽屉,5411,1+12,所以, 至少有 2 张牌是同一花色的。 生活中还有很多这样的例子,老师相信你们会运用今天所学的鸽巢原理去解决生活问题!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:六年级下册数学教案:5 数学广角-鸽巢问题(人教版)(6).docx
    链接地址:https://www.163wenku.com/p-1302354.html
    孙红松
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库