2020-2021学年数学人教版八下册:18.2.1矩形-教案(2).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020-2021学年数学人教版八下册:18.2.1矩形-教案(2).docx》由用户(孙红松)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 学年 学人 教版八 下册 18.2 矩形 教案 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、A A D D C C B B 18.2.118.2.1 矩形(矩形(1 1) 一、教学目标:一、教学目标: 1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系 2会初步运用矩形的概念和性质来解决有关问题 3渗透运动联系、从量变到质变的观点 二、重点、难点二、重点、难点 1重点:矩形的性质 2难点:矩形的性质的灵活应用 三、教学过程三、教学过程 复习引入复习引入: : 平行四边形的性质 边:对边平行且相等 角:对角相等,邻角互补 对角线:对角线互相平分 讲授新课讲授新课 一、我们都知道三角形具有稳定性,平行四边形是否也具有稳定性? 在推动平行四边形的变化过程中,你有没有发现一种熟悉的、更
2、特殊的图形? 二、探究新知 矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形) 矩形是特殊的平行四边形 矩形的一般性质: 边:对边平行且相等 角:对角相等,邻角互补 对角线:对角线互相平分 探索新知: 矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还 有哪些特殊性质呢? 猜想 1:矩形的四个角都是直角 猜想 2:矩形的对角线相等 求证:矩形的四个角都是直角 已知:如图,四边形 ABCD 是矩形 求证:A=B=C=D=90 证明: 四边形 ABCD 是矩形 A=90 又 矩形 ABCD 是平行四边形 A=C B = D A +B = 180 A=B=C=D=90 即矩
3、形的四个角都是直角 求证:矩形的对角线相等 已知:如图,四边形 ABCD 是矩形 求证:AC = BD 证明:在矩形 ABCD 中 ABC = DCB = 90 又AB = DC , BC = CB ABCDCB (SAS) AC = BD 即矩形的对角线相等 进一步可得 OA=OB=OC=OD 如图, 矩形 ABCD 的对角线 AC,BD 相交于点 O , 观察图中的RtABC, 在RtABC 中,BO 是斜边 AC 上的中线,BO 与 AC 有什么关系? 根据矩形的性质,可以得到: 直角三角形的性质: 直角三角形斜边上的中线等于斜边的一半. 例 1:如图,矩形 ABCD 的两条对角线相交 于点 O,AOB=60,AB=4 ,求矩形 对角线的长? 解:四边形 ABCD 是矩形 OA=OB AOB=60 AOB 是等边三角形 OA=AB=4() 矩形的对角线长 AC=BD=2OA=8() 课时小结: 1、矩形的定义:有一个角是直角的平行四边形叫做矩形 2、矩形的性质: 边:对边平行且相等 角:四个角都是直角 对角线: 对角线互相平分且相等 3、直角三角形斜边上的中线性质 直角三角形斜边上的中线等于斜边的一半 A B C D ACAC 2 2 1 1 BDBD 2 2 1 1 BOBO D C B A O
展开阅读全文