小学数学常考应用题归类指导(共12种含例题答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学数学常考应用题归类指导(共12种含例题答案).docx》由用户(luzy369)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 应用题 归类 指导 指点 指示 12 十二 例题 答案 谜底 下载 _六年级下册_人教版(2024)_数学_小学
- 资源描述:
-
1、1 小学小学数学常考应用题归类指导数学常考应用题归类指导 一、一、归一问题归一问题 【含义】 在解题时,先求出一份是多少(即单一量) ,然后以单一量为标准,求出所要求的数量。这 类应用题叫做归一问题。 【数量关系】 总量份数1 份数量 1 份数量所占份数所求几份的数量 另一总量(总量份数)所求份数 【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 【例 1】 买 5 支铅笔要 0.6 元钱,买同样的铅笔 16 支,需要多少钱? 解 (1)买 1 支铅笔多少钱?0.650.12(元) (2)买 16 支铅笔需要多少钱?0.12161.92(元) 列成综合算式 0.65160.
2、12161.92(元) 答:需要 1.92 元。 【例 2】 3 台拖拉机 3 天耕地 90 公顷,照这样计算,5 台拖拉机 6 天耕地多少公顷? 解 (1)1 台拖拉机 1 天耕地多少公顷?903310(公顷) (2)5 台拖拉机 6 天耕地多少公顷?1056300(公顷) 列成综合算式 9033561030300(公顷) 答:5 台拖拉机 6 天耕地 300 公顷。 【例 3】 5 辆汽车 4 次可以运送 100 吨钢材,如果用同样的 7 辆汽车运送 105 吨钢材,需要运几次? 解 (1)1 辆汽车 1 次能运多少吨钢材?100545(吨) (2)7 辆汽车 1 次能运多少吨钢材?573
3、5(吨) (3)105 吨钢材 7 辆汽车需要运几次?105353(次) 列成综合算式 105(100547)3(次) 答:需要运 3 次 二、二、归总问题归总问题 【含义】 解题时,常常先找出“总数量” ,然后再根据其它条件算出所求的问题,叫归总问题。所谓 “总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总 路程等。 【数量关系】 1 份数量份数总量 总量1 份数量份数 总量另一份数另一每份数量 【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。 2 【例 1】 服装厂原来做一套衣服用布 3.2 米,改进裁剪方法后,每套衣服用布 2.8 米。原来做
4、 791 套衣 服的布,现在可以做多少套? 解 (1)这批布总共有多少米?3.27912531.2(米) (2)现在可以做多少套?2531.22.8904(套) 列成综合算式 3.27912.8904(套) 答:现在可以做 904 套。 【例 2】 小华每天读 24 页书, 12 天读完了 红岩 一书。 小明每天读 36 页书, 几天可以读完 红岩 ? 解 (1) 红岩这本书总共多少页?2412288(页) (2)小明几天可以读完红岩?288368(天) 列成综合算式 2412368(天) 答:小明 8 天可以读完红岩 。 【例 3】 食堂运来一批蔬菜,原计划每天吃 50 千克,30 天慢慢消
5、费完这批蔬菜。后来根据大家的意 见,每天比原计划多吃 10 千克,这批蔬菜可以吃多少天? 解 (1)这批蔬菜共有多少千克?50301500(千克) (2)这批蔬菜可以吃多少天?1500(5010)25(天) 列成综合算式 5030(5010)15006025(天) 答:这批蔬菜可以吃 25 天。 三、三、和差问题和差问题 【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】 大数(和差)2 小数(和差)2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。 【例 1】 甲乙两班共有学生 98 人,甲班比乙班多 6 人,求两班各有多少
6、人? 解 甲班人数(986)252(人) 乙班人数(986)246(人) 答:甲班有 52 人,乙班有 46 人。 【例 2】 长方形的长和宽之和为 18 厘米,长比宽多 2 厘米,求长方形的面积。 解 长(182)210(厘米) 宽(182)28(厘米) 长方形的面积10880(平方厘米) 答:长方形的面积为 80 平方厘米。 【例 3】 有甲乙丙三袋化肥,甲乙两袋共重 32 千克,乙丙两袋共重 30 千克,甲丙两袋共重 22 千克, 3 求三袋化肥各重多少千克。 解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2 千克,且甲是大数, 丙是小数。由此可知 甲袋化肥重量(222
7、)212(千克) 丙袋化肥重量(222)210(千克) 乙袋化肥重量321220(千克) 答:甲袋化肥重 12 千克,乙袋化肥重 20 千克,丙袋化肥重 10 千克。 【例 4】 甲乙两车原来共装苹果 97 筐,从甲车取下 14 筐放到乙车上,结果甲车比乙车还多 3 筐,两 车原来各装苹果多少筐? 解 “从甲车取下 14 筐放到乙车上,结果甲车比乙车还多 3 筐” ,这说明甲车是大数,乙车是小 数, 甲与乙的差是 (1423) , 甲与乙的和是 97, 因此甲车筐数 (971423) 264 (筐) 乙车筐数976433(筐) 答:甲车原来装苹果 64 筐,乙车原来装苹果 33 筐。 四、四、
8、和倍问题和倍问题 【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几) ,要求这两个数各是多少, 这类应用题叫做和倍问题。 【数量关系】 总和(几倍1)较小的数 总和较小的数较大的数 较小的数几倍较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 【例 1】 果园里有杏树和桃树共 248 棵,桃树的棵数是杏树的 3 倍,求杏树、桃树各多少棵? 解 (1)杏树有多少棵?248(31)62(棵) (2)桃树有多少棵?623186(棵) 答:杏树有 62 棵,桃树有 186 棵。 【例 2】 东西两个仓库共存粮 480 吨,东库存粮数是西库存粮数的 1.
9、4 倍,求两库各存粮多少吨? 解 (1)西库存粮数480(1.41)200(吨) (2)东库存粮数480200280(吨) 答:东库存粮 280 吨,西库存粮 200 吨。 【例 3】 甲站原有车 52 辆, 乙站原有车 32 辆, 若每天从甲站开往乙站 28 辆, 从乙站开往甲站 24 辆, 几天后乙站车辆数是甲站的 2 倍? 解 每天从甲站开往乙站 28 辆,从乙站开往甲站 24 辆,相当于每天从甲站开往乙站(2824) 辆。把几天以后甲站的车辆数当作 1 倍量,这时乙站的车辆数就是 2 倍量,两站的车辆总数(52 32)就相当于(21)倍, 那么,几天以后甲站的车辆数减少为 4 (523
10、2)(21)28(辆) 所求天数为(5228)(2824)6(天) 答:6 天以后乙站车辆数是甲站的 2 倍。 【例 4】 甲乙丙三数之和是 170,乙比甲的 2 倍少 4,丙比甲的 3 倍多 6,求三数各是多少? 解 乙丙两数都与甲数有直接关系,因此把甲数作为 1 倍量。 因为乙比甲的 2 倍少 4,所以给乙加上 4,乙数就变成甲数的 2 倍; 又因为丙比甲的 3 倍多 6,所以丙数减去 6 就变为甲数的 3 倍; 这时(17046)就相当于(123)倍。那么, 甲数(17046)(123)28 乙数282452 丙数283690 答:甲数是 28,乙数是 52,丙数是 90。 五、五、差倍
11、问差倍问题题 【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几) ,要求这两个数各是多少, 这类应用题叫做差倍问题。 【数量关系】 两个数的差(几倍1)较小的数 较小的数几倍较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 【例 1】 果园里桃树的棵数是杏树的 3 倍,而且桃树比杏树多 124 棵。求杏树、桃树各多少棵? 解 (1)杏树有多少棵?124(31)62(棵) (2)桃树有多少棵?623186(棵) 答:果园里杏树是 62 棵,桃树是 186 棵。 【例 2】 爸爸比儿子大 27 岁,今年,爸爸的年龄是儿子年龄的 4 倍,求父子二人今
12、年各是多少岁? 解 (1)儿子年龄27(41)9(岁) (2)爸爸年龄9436(岁) 答:父子二人今年的年龄分别是 36 岁和 9 岁。 【例 3】 商场改革经营管理办法后, 本月盈利比上月盈利的 2 倍还多 12 万元, 又知本月盈利比上月盈 利多 30 万元,求这两个月盈利各是多少万元? 解 如果把上月盈利作为 1 倍量,则(3012)万元就相当于上月盈利的(21)倍,因此 上月盈利(3012)(21)18(万元) 本月盈利183048(万元) 答:上月盈利是 18 万元,本月盈利是 48 万元。 【例 4】 粮库有 94 吨小麦和 138 吨玉米, 如果每天运出小麦和玉米各是 9 吨,
13、问几天后剩下的玉米是 小麦的 3 倍? 5 解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894) 。 把几天后剩下的小麦看作 1 倍量,则几天后剩下的玉米就是 3 倍量,那么, (13894)就相当于 (31)倍,因此 剩下的小麦数量(13894)(31)22(吨) 运出的小麦数量942272(吨) 运粮的天数7298(天) 答:8 天以后剩下的玉米是小麦的 3 倍。 六、六、倍比问题倍比问题 【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍 比的方法算出要求的数,这类应用题叫做倍比问题。 【数量关系】 总量一个数量倍数
14、 另一个数量倍数另一总量 【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。 【例 1】 100 千克油菜籽可以榨油 40 千克,现在有油菜籽 3700 千克,可以榨油多少? 解 (1)3700 千克是 100 千克的多少倍?370010037(倍) (2)可以榨油多少千克?40371480(千克) 列成综合算式 40(3700100)1480(千克) 答:可以榨油 1480 千克。 【例 2】 今年植树节这天,某小学 300 名师生共植树 400 棵,照这样计算,全县 48000 名师生共植树 多少棵? 解 (1)48000 名是 300 名的多少倍?48000300160(倍) (
15、2)共植树多少棵?40016064000(棵) 列成综合算式: 400(48000300)64000(棵) 答:全县 48000 名师生共植树 64000 棵。 【例 3】 凤翔县今年苹果大丰收,田家庄一户人家 4 亩果园收入 11111 元,照这样计算,全乡 800 亩 果园共收入多少元?全县 16000 亩果园共收入多少元? 解 (1)800 亩是 4 亩的几倍?8004200(倍) (2)800 亩收入多少元? 111112002222200(元) (3)16000 亩是 800 亩的几倍? 1600080020(倍) (4)16000 亩收入多少元? 22222002044444000
16、(元) 答:全乡 800 亩果园共收入 2222200 元,全县 16000 亩果园共收入 44444000 元。 6 七、七、相遇问题相遇问题 【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。 【数量关系】 相遇时间总路程(甲速乙速) 总路程(甲速乙速)相遇时间 【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。 【例 1】 南京到上海的水路长 392 千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小 时行 28 千米,从上海开出的船每小时行 21 千米,经过几小时两船相遇? 解 392(2821)8(小时) 答:经过 8
展开阅读全文