专题02 二次函数与营销问题(教师版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专题02 二次函数与营销问题(教师版).doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题02 二次函数与营销问题教师版 专题 02 二次 函数 营销 问题 教师版 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、【方法综述】【方法综述】 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到 函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的函数的最值或在一
2、定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的 自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。 【典例示范】【典例示范】 类型一常规盈利问题类型一常规盈利问题 例例 1:(2019 湖北宜昌)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过 程下面的二次函数图象(部分)刻画了该公司年初以来累积利润 (万元)与销售时间 (月)之间的关系 (即前 个月的利润总和 和 之间的关系) 根据图象提供的信息,解答下列问题: 由已知图象上的三点坐标,求累
3、积利润 (万元)与时间 (月)之间的函数关系式; 求截止到几月末公司累积利润可达到万元; 求第 个月公司所获利润是多少万元? 【答案】 (1); (2)截止到月末公司累积利润可达万元; (3)万元 2)22,即 S= t22t 答:累积利润 S 与时间 t 之间的函数关系式为:S= t22t; (2)把 S=30 代入 S= (t2)22,得: (t2)22=30 解得:t1=10,t2=6(舍去) 答:截止到 10 月末公司累积利润可达 30 万元 针对训练针对训练 1(2018 宁波)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润 y1(千元)与进货量 x (吨) 近似满足
4、函数关系 y1=0.25x, 乙种水果的销售利润 y2(千元) 与进货量 x (吨) 之间的函数 y2=ax2+bx+c 的图象如图所示 (1)求出 y2与 x 之间的函数关系式; (2)如果该市场准备进甲、乙两种水果共 8 吨,设乙水果的进货量为 t 吨,写出这两种水果所获得的销售 利润之和 W(千元)与 t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最 大,最大利润是多少? 【答案】 (1)y2= x2+ x; (2)w= (t4)2+6,t=4 时,w 的值最大,最大值为 6, 两种水果各进 4 吨时获得的销售利润之和最大,最大利润是 6 千元 【解析】解: (
5、1)函数 y2=ax2+bx+c 的图象经过(0,0) , (1,2) , (4,5) ,解得: ,y2= x2+ x (2)w = y1+y2= (8t) t2+ t= (t4)2+6,t=4 时,w 的值最大,最大值为 6, 两种水果各进 4 吨时获得的销售利润之和最大,最大利润是 6 千元 2 (2019 泰州姜堰区期末)某水果店销售某品牌苹果,该苹果每箱的进价是 40 元,若每箱售价 60 元,每 星期可卖 180 箱为了促销,该水果店决定降价销售市场调查反映:若售价每降价 1 元,每星期可多卖 10 箱设该苹果每箱售价 x 元(40 x60) ,每星期的销售量为 y 箱 (1)求 y
6、 与 x 之间的函数关系式; (2)当每箱售价为多少元时,每星期的销售利润达到 3570 元? (3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元? 【答案】(1)y=-10 x+780;(2) 57;(3)当售价为 59 元时,利润最大,为 3610 元 (3)设每星期的利润为 w, W=(x-40)(-10 x+780)=-10(x-59)2+3610, -100,二次函数向下,函数有最大值, 当 x=59 时, 利润最大,为 3610 元. 3 (2019 安徽阜阳期末)某企业生产了一款健身器材,可通过实体店和网上商店两种途径进行销售,销售 了一段时间后,该企业对这种健身器
展开阅读全文