2021年深圳市高三年级第一次调研考试-数学答案.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年深圳市高三年级第一次调研考试-数学答案.pdf》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 深圳市 三年级 第一次 调研 考试 数学 答案 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、深圳市高三数学第一次调研考试试题答案及评分参考第1页(共13页) 2021 年深圳市高三第年深圳市高三第一一次调研考试次调研考试 数学试题答案及评分参考 一、单项选择题: 题号 1 2 3 4 5 6 7 8 答案 D A B A D C B C 二、多项选择题: 题号 9 10 11 12 答案 AC BC BD ABD 12. 解析: (1)考查选项 A:若/CD平面xOy,考虑以下特殊情形: 当点B与坐标原点O重合时,S为正方形; 当点A与坐标原点O重合时,S为三角形,故选项 A 正确; (2)考查选项 B:若点A与坐标原点O重合,即AB在z轴上, 易知/CD平面xOy,且S为三角形,
2、不难知道其面积为 122 1 224 =,故选项 B 正确; (3)考查选项 C:当OAOBOC=,且点O在正四面体ABCD外部时, 则点D恰好为以OA,OB,OC为棱的正方体的一个顶点, 1AB =, 2 2 OA=,S是边长为 2 2 的正方形,其面积为 1 2 ,故选项 C 错误; (不难知道当OA OBOC=,且点O在正四面体ABCD内部时,S为三角形,且其面积为 5 12 ) (4)考查选项 D:设AB的中点为M,则 1 2 OM =,且 3 2 MD =, 易知 133 22 ODOMMD + +=,即 3 2 OD , 点D到坐标原点O的距离小于 3 2 ,故选项 D 正确; 综
3、上所述,应选 A、B、D. 三、填空题: 13. 2 1 ( )= 4 f xx +(答案不唯一) ; 14. 8; 15. 6; 16. 13 + 23 . 绝密绝密启封并使用完毕前启封并使用完毕前 试题类型:试题类型:A 深圳市高三数学第一次调研考试试题答案及评分参考第2页(共13页) 13. 解析: 2 1 ( )= 4 f xx +,或 2 1 ( )= 2 x f x + ,或 2 1 ( )= 2 x f x + 等(只需 2 ( )=f xaxc+满足 1 4 ac =即可) 16. 解析:不妨设BCa=,ACb=, 若30ACB=,则由正弦定理可得2 sin30 AB = ,故
4、1AB =, 由余弦定理得 222222 3 12cos303(1)() 2 ababababab=+=+, 22 42 3ab+, 显然ABC 为由ABC所得到的拿破仑三角形(等边三角形),设其边长为x, 易知90ACB=,且 3 3 ACa=, 3 3 BCb=, 22222 331 ()()() 333 xabab=+=+, ABC 的面积 222 33313 ()(42 3)+ 4121223 Sxab=+=, 显然可取等号,即ABC 的面积最大值为 13 + 23 ,故应填 13 + 23 . 四、解答题:解答应写出文字说明,证明过程或演算步骤 17 (10 分) 设数列 n a的前
5、n项和 n S,满足 1 12 n n n S S S + = + ,且 1 1a =. (1)证明:数列 1 n S 为等差数列; (2)求 n a的通项公式. 解: (1)由 1 12 n n n S S S + = + ,得 1 121 n nn S SS + + = , 2 分 1 11 2 nn SS + = , 11 11 1 Sa = , 故数列 1 n S 是首项为 1,公差为 2 的等差数列. 4 分 (2)由(1)知 1 1 (1) 221 n nn S = += , 则 1 21 n S n = ,6 分 当1n且n 时,1 112 2123(21)(23) nnn aS
6、S nnnn = ,8 分 深圳市高三数学第一次调研考试试题答案及评分参考第3页(共13页) 故 n a 的通项公式为 1=1 =2 1. (21)(23) n n a n nn , , 10 分 【命题意图】 本题主要考查等差数列的定义和通项公式, 以及 n a与 n S的关系, 考察了学生的数学运算, 逻辑推理等核心素养. 18 (12 分) ABC的内角A,B,C的对边分别为a,b,c, 已知A为锐角, 22 sincos 2 ca BC ab =. (1)求A; (2)若 3 4 bc=,且BC边上的高为2 3,求ABC的面积. 解: (1) 22 sincos 2 ca BC ab
7、=, 22 2sin2cosabBcaabC=+, 1 分 由余弦定理,得 222 2coscababC=+, 2 2sinabBb=, 2 sinaBb=, 2 分 由正弦定理,得 sinsin ab AB =, 2sin sinsinABB=, 又()0,B,即sin0B, 1 sin 2 A=, 4 分 角A为锐角, 6 A=. 6 分 (2)BC边上的高为2 3, ABC的面积 1 =2 33 2 Saa =,7 分 又ABC的面积 1 =sin 24 bc SbcA=, 3 4 bc a=,即4 3bca=, 8 分 又 3 4 bc=, 深圳市高三数学第一次调研考试试题答案及评分参
8、考第4页(共13页) 2 16ca=,且 22 3 3 16 bca=,10 分 在ABC中,由余弦定理,得 2222 316193 cos 2224 38 3 bcaaaaa A bca + = , 解得7a=, 11 分 = 37 3Sa=,即ABC的面积为7 3. 12 分 【命题意图】本题主要考察正弦定理,余弦定理等知识,意在考察考生方程、转化与化归思想,考察 了学生的逻辑推理,数学运算等核心素养 19 (12 分) 某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M处投一次三分球,投进得3分,未 投进不得分,以后均在N处投两分球,每投进一次得2分,未投进不得分. 测试者累计得
9、分高于3分即通 过测试,并终止投篮. 甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们 每轮两分球和三分球的命中次数分别得到如下图表: (第 19 题图) 若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率. (1)求甲同学通过测试的概率; (2)若甲、乙两位同学均通过了测试,求甲得分比乙得分高的概率. 解: (1)甲同学两分球投篮命中的概率为5 . 0 5 10 7 10 6 10 3 10 4 10 5 = + , 1 分 甲同学三分球投篮命中的概率为1 . 0 5 10 1 10 2 10 1 0 10 1 = + , 2 分 设甲
10、同学累计得分为X, 深圳市高三数学第一次调研考试试题答案及评分参考第5页(共13页) 则(4)(4)(5)0.9 0.5 0.50.1 0.50.1 0.5 0.50.3P XP XP X=+=+= 甲同学通过测试的概率为0.3. 5 分 (2)同(1)可求,乙同学两分球投篮命中的概率为0.4,三分球投篮命中的概率为0.2, 7 分 设乙同学累计得分为Y,则 128. 04 . 04 . 08 . 0)4(=YP, 8 分 128. 04 . 06 . 02 . 04 . 02 . 0)5(=+=YP, 9 分 设“甲得分比乙得分高”为事件A,“甲、乙两位同学均通过了测试”为事件B, 则()(
11、5)(4)0.075 0.1280.0096P ABP XP Y=, 10 分 0768. 0)5()4()5()4()(=+=+=YPYPXPXPBP, 11 分 由条件概率公式可得, ()0.00961 (|) ( )0.07688 P AB P A B P B =. 12 分 【命题意图】本题以体育运动为背景,通过频率与概率定义以及条件概率公式等知识点,考查学生数 学建模、数学运算、逻辑推理等数学核心素养,体现分类讨论的数学思想. 20 (12 分) 如图,在四棱锥SABCD中,13SASBSCSD=,ACCD,6AB=,8BD=. (1)求证:平面SAD平面ABCD; (2)求二面角A
12、 SBD的余弦值. (第 20 题图) 解: (1)证明: 如图所示,取AD的中点M,连接SM,MC. 1 分 SASD=, SMAD. ACCD, ACD是直角三角形, 1 2 CMAD=, AMCMDM=. SASC=, A B C D S M C A B D S 深圳市高三数学第一次调研考试试题答案及评分参考第6页(共13页) RtSAM RtSCM, 3 分 2 CMSAMS=, AMCMM=, SM 平面ABCD, 又SM 平面SAD, 平面SAD平面ABCD. 5 分 (2)由(1)可知,SM 平面ABCD, 2 BMSAMS=, 又SASB=, RtSAM RtSBM, BMAM
13、=, A,B,C,D四点共圆, ABBD. 6 分 6AB=,8BD=, 10AD=, 5AM =, 又13SA=, 12SM =. 7 分 (解法一)以B为坐标原点,BD为x轴,BA为y轴,过点B平行于SM的直线为z轴,建立如图所 示的空间直角坐标系,易得(0,0,0)B,(8,0,0)D,(0,6,0)A,(4,3,12)S, 8 分 则有(4,3,12)=BS,(0,6,0)=BA,(8,0,0)=BD, 分别设平面ABS和平面DBS的法向量为 111 ( ,)=mx y z和 222 (,)=nxy z, 则 0 0 = = , , BA m BS m 即 1 111 60 43120
14、 = += , , y xyz 9 分 则平面ABS的一个法向量为(3,0, 1)=m, 同理,平面DBS的一个法向量为(0,4, 1)n =, 10 分 1170 cos, 1701017 m n m n mn = , 11 分 A B C D S M z y x 深圳市高三数学第一次调研考试试题答案及评分参考第7页(共13页) 设二面角A SBD的平面角为,则 170 cos 170 =. 12 分 (解法二)以M为坐标原点,过点M平行于DB的直线为x轴,平行于AB的直线为y轴,MS为z 轴,建立如图所示的空间直角坐标系,易得(4,3,0)B,( 4,3,0)D ,(4, 3,0)A,(0
15、,0,12)S, 8 分 则有( 4, 3,12)BS = ,(0, 6,0)BA=,( 8,0,0)BD = , 分别设平面ABS和平面DBS的法向量为 111 ( ,)=mx y z和 222 (,)=nxy z, 则 0 0 = = , , BA m BS m 即 1 111 60 43120 y xyz = += , , 9 分 则平面ABS的一个法向量为(3,0,1)m =, 同理,平面DBS的一个法向量为(0,4,1)n =, 10 分 1170 cos, 1701017 m n m n mn = , 11 分 设二面角A SBD的平面角为,则 170 cos 170 =. 12
展开阅读全文