人教A版高中数学必修第一册5.3《诱导公式》教案(1).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修第一册5.3《诱导公式》教案(1).docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 诱导公式 人教 高中数学 必修 一册 5.3 诱导 公式 教案 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、5.3 5.3 诱导公式诱导公式 本节课选自 普通高中课程标准数学教科书-必修第一册一 (人教 A 版) 第五章 三角函数 , 本节课是第 5 课时。 本节主要是推导诱导公式二、 三、 四、 五、 六,并利用它们解决一些求值、 化简、 证明三角恒等式。 本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公 式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、 证明等 问题。 在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是 利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体
2、现,在教学中注 意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识特别是在本课时的三 个转化问题引入后,为什么确定 180+a 角为第一研究对象,a 角为第二研究对象,正是化归思想的运 用。 课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角,学 生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制, 但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习。 课程目标课程目标 学科素养学科素养 A.借助单位圆,推导出正弦、余弦和正切 的诱导公式 B.能正确运用诱导公式将任意角的三角函
3、数化为锐角的三角函数,并解决有关三角 函数求值、化简和恒等式证明问题; C.了解未知到已知、复杂到简单的转化过 程,培养学生的化归思想。 1.数学抽象:利用单位圆找不同角的关系; 2.逻辑推理:诱导公式的推导; 3.数学运算: 有关三角函数求值、 化简和恒等式证明问 题。 1.教学重点:诱导公式的记忆、理解、运用; 2.教学难点:诱导公式的推导、记忆及符号的判断。 多媒体 教学过程 教学设计意图 核心素养目标 一、复习回顾,温故知新 1. 任意角三角函数的定义 【答案】设角,是一个任意角,R它的终边与单位圆交于点 ),(Pyx。 那么(1);sin,sinyy即的正弦函数。记作叫做 (2);c
4、os,cosxx即的余弦函数。记作叫做 ;tan,tan x y x y 即的正切。记作叫做 2.诱导公式一 tan)2tan( cos)2cos( sin)2sin( k k k ,其中,zk。 终边相同的角的同一三角函数值相等 二、探索新知 思考 1: (1).终边相同的角的同一三角函数值有什么关系? 【答案】相等 (2).角 -与的终边 有何位置关系? 【答案】终边关于 x 轴对称 (3).角与的终边 有何位置关系? 【答案】终边关于 y 轴对称 (4).角与的终边 有何位置关系? 【答案】终边关于原点对称 思考 2: 已知任意角的终边与单位圆相交于点 P(x, y),请同学 们思考回答
5、点 P 关于原点、x 轴、y 轴对称的三个点的坐标是什么? 【答案】点 P(x, y)关于原点对称点 P1(-x, -y) 点 P(x, y)关于 x 轴对称点 P2(x, -y) 点 P(x, y)关于 y 轴对称点 P3(-x, y) 探究一 如图, 角的三角函数值与的三角函数值之间有什么 关系? 角 + 与角 的终边关于原点O对 称, x y xytan,cos,sin , x y x y xy )tan(,)cos(,)sin( 通过复习上节所学 任意角三角函数的 定义与诱导公式一, 引入本节新课。建立 知识间的联系,提高 学生概括、类比推理 的能力。 通过思考让学生了 解角终边之间的
6、关 系,为推导诱导公式 作铺垫,提高学生的 解决问题、分析问题 的能力。 通过探究,由图形观 察角 的三角函 数值与的三角函 数值之间有什么关 系,进而得到诱导公 式二,提高学生分析 问题、概括能力。 通过探究,由图形观 察角 的三角函数 值与的三角函数 值之间有什么关系, 进而得到诱导公式 三,提高学生分析问 题、概括能力。 (公式二)sin( + ) = sin , cos( + ) = cos , tan( + ) = tan 。 探 究 二 角与的 三 角 函 数 值 之 间 有 什 么 关 系 角 与角 的终边关于x轴对称,有 x y xytan,cos,sin 。 x y x y
7、xy )tan(,)cos(,)sin( 。 (公式三) sin() = sin , cos() = cos , tan() = tan 。 探究三 根据上两组公式的推导,你能否推导出角与角的 三角函数值之间的关系? 角与 角的 终 边 关 于y轴 对 称 , 故 有 x y xytan,cos,sin x y x y xy )tan(,)cos(,)sin( 所以,(公式二)sin( - ) = sin , cos( - ) = cos ,tan( - ) = -tan 。 思考 3:这四个诱导公式有什么规律? ,)(2Zkk的三角函数值,等于的同名 通过探究,由图形观 察角 的三角函 数值
8、与的三角函 数值之间有什么关 系,进而得到诱导公 式三,提高学生分析 问题、概括能力。 通过思考,寻找这四 个诱导公式的共同 规律,提高学生分析 问题、概括能力。 通过例题练习诱导 公式,进一步理解诱 导公式的作用,提高 学生解决问题的能 力。 通过思考总结用诱 导公式求任意角三 角函数值的步骤,提 高学生解决问题的 能力。 函数值,前面加上一个把看成锐角时原函数值的符号 总结为一句话:函数名不变,符号看象限。 例 1.求下列三角函数值 (1)cos225 ;(2)sin 3 8 ;(3)sin( 3 16 );(4)tan(-2 040 ). 活动活动:这是直接运用公式的题目类型,让学生熟悉
展开阅读全文