人教A版高中数学必修第一册5.3《诱导公式》教案(2).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修第一册5.3《诱导公式》教案(2).docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 诱导公式 人教 高中数学 必修 一册 5.3 诱导 公式 教案 下载 _必修第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、【新教材】【新教材】5.3 诱导公式诱导公式 教学设计教学设计 (人教(人教 A 版)版) 本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充 分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会的任意性;综合六 组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思 想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函 数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。 课程目标课程目标 1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运
2、用诱导公式 将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题 2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信 息加工能力、运算推理能力、分析问题和解决问题的能力。 数学学科素养数学学科素养 1.数学抽象:理解六组诱导公式; 2.逻辑推理: “借助单位圆中三角函数的定义推导出六组诱导公式; 3.数学运算:利用六组诱导公式进行化简、求值与恒等式证明. 重点:重点:借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式 将任意角的三角函数化为锐角的三角函数; 难点:难点:解决有关三角函数求值、化简和恒等
3、式证明问题 教学方法:教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。 教学工具:教学工具:多媒体。 一、 情景导入情景导入 利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角 间的角转化到角呢? )2 , 0)2 , 0 ) 2 , 0 除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。 那么它们的三角函数值有何关系呢? 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 二、预习课本,引入新课二、预习课本,引入新课 阅读课本 188-192 页,思考并完成以下问题 1., 的终边与 的终边有怎样的对称关系
4、? 2诱导公式二、三、四的内容是什么? 3. 的终边与 的终边有怎样的对称关系? 4.诱导公式五、六的内容是什么? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 三、新知探究三、新知探究 1.公式一::终边相同的角 2.公式二:终边关于 X 轴对称的角 3.公式三:终边关于 Y 轴对称的角 , , , 4.公式四:任意与的终边都是关于原点中心对称的终边关于原点对称的角 sin(1800+ ) = sin, cos(180 0 + ) = cos, , 5.公式五: 终边关于直线 yx 对称的角的诱导公式(公式五): sin(900 ) = sin( 2 ) = cos;
5、 ccos(900 ) = cos( 2 ) = sin. 6、公式六: 2 型诱导公式(公式六): sin(900+ ) = sin( 2 + ) = cos; ccos(900+ ) = cos( 2 + ) = sin. 【说明说明】:公式中的指任意角;在角度制和弧度制下,公式都成立; 记忆方法: “奇变偶不变,符号看象限”; 【方法小结方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是: 化负角的三角函数为正角的三角函数;化为0,2内的三角函数; 化为锐角的三角函数。 可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。 sin)360sin
6、( ksin)2sin( k cos)360cos( kcos)2cos( k tan)360tan( ktan)2tan( k -sinsin( )coscos( )tantan( ) sin180sin()sinsin( ) -cos180cos()-coscos( ) tan180tan()tantan( ) 180 sin= sin ( + )cos= cos ( + ) tan=tan(180 + )tan=tan ( + ) 四、典例分析、举一反三四、典例分析、举一反三 题型一题型一 给角求值给角求值 例例 1 求下列各三角函数式的值: (1)sin(660 );(2)cos 27
展开阅读全文